Skip to main content
Log in

Using Acoustic Emission Pulses to Assess the Ductile–Brittle Transition Temperature of Aluminum Matrix Composites at Negative Temperatures

  • Published:
Russian Engineering Research Aims and scope

Abstract

The mechanical properties of aluminum matrix composites at negative temperatures are assessed experimentally by means of the classification of acoustic emission pulses; attention focuses, in particular, on the ductile–brittle transition temperature. This transition does not occur even at –100°C, and so it is possible to use aluminum matrix composites for suspension components operating in the Arctic and Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Koli, D.K., Agnihotri, G., and Purohit, R., Properties and characterization of Al–Al2O3 composites processed by casting and powder metallurgy routes (review), Int. J. Latest Trends Eng. Technol., 2013, vol. 2, no. 4, pp. 486–493.

    Google Scholar 

  2. Adebisi, A.A., Maleque, M.A., and Rahman, M.M., Metal matrix composite brake rotor: Historical development and product life cycle analysis, Int. J. Automot. Mech. Eng., 2011, vol. 4, pp. 471–480.

    Article  Google Scholar 

  3. Kurganova, Yu.A. and Kolmakov, A.G., Konstruktsionnye metallomatrichnye kompozitsionnye materialy (Structural Metal Matrix Composite Materials), Moscow: Bauman Moscow State Tech. Univ, 2015.

  4. Shavnev, A.A., Berezovskii, V.V., and Kurganova, Yu.A., Specificity of metal matrix composites based on aluminum alloy reinforced by SiC particles application. Part I (review), Nov. Materialoved. Nauka Tekh., 2015, no. 3 (15), pp. 3–10.

  5. Shavnev, A.A., Berezovskii, V.V., and Kurganova, Yu.A., Specificity of metal matrix composites based on aluminum alloy reinforced by SiC particles application. Part II (review), Nov. Materialoved. Nauka Tekh., 2015, no. 3 (15), pp. 11–17.

  6. Finkel’, V.M., Fizika razrusheniya: Rost treshchin v tverdykh telakh (Fracture Physics: Crack Propagation in Solids), Moscow: Metallurgiya, 1970.

  7. Solntsev, Yu.P., Ermakov, B.S., and Sleptsov, O.I., Materialy dlya nizkikh i kriogennykh temperatur: Entsiklopedicheskii spravochnik (Materials for Low and Cryogenic Temperatures: Encyclopedic Handbook), St. Petersburg: Khimizdat, 2008.

  8. Novikov, N.V., Lebedev, A.A., and Koval’chuk, B.I., Mekhanicheskie ispytaniya konstruktsionnykh materialov pri nizkikh temperaturakh (Mechanical Tests of Construction Materials at Low Temperature), Kiev: Naukova Dumka, 1974.

  9. Bol’shakov, A.M., Veroyatnostnye metody otsenki khrupkogo razrusheniya stal’nykh konstruktsii (Probabilistic Assessment of Brittle Destruction of Steel Constructions), Yakutsk: Larionov Inst. Phys.-Tech. Probl. North Sib. Branch Russ. Acad. Sci., 2011.

  10. RF Patent 2671152.

  11. Kabaldin, Yu.G., Shatagin, D.A., Anosov, M.S., et al., Classification and identification of acoustic emission signals under deformation and fracture of materials at low temperatures on the basis of the approaches of artificial intelligence and nonlinear dynamics, Kontrol. Diagn., 2018, no. 1, pp. 32–38. https://doi.org/10.14489/td.2018.01.pp.032-038

  12. Kabaldin, Yu.G., Khlybov, A.A., Anosov, M.S., et al., Evaluation of cold resistance of metals with various type of crystal structure, Vestn. Izhevsk. Gos. Tekh. Univ. im. M.T. Kalashnikova, 2019, vol. 22, no. 3, pp. 48–55. https://doi.org/10.22213/2413-1172-2019-3-48-55

  13. Chernyshov, E.A., Romanov, A.D., and Romanova, E.A., Production of highly reinforced dispersion-strengthened composite material based on aluminum by internal oxidation, Metallurgist, 2018, vol. 62, pp. 815–819. https://doi.org/10.1007/s11015-018-0724-9

    Article  Google Scholar 

  14. Romanov, A.D., Romanova, E.A., and Chernyshov, E.A., Study of the specifics of liquid-phase oxidation of aluminum melt to obtain an aluminum matrix composite, Metallurgist, 2021, vol. 65, pp. 775–782. https://doi.org/10.1007/s11015-021-01215-9

    Article  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Science Foundation (grant 22-29-20208, https://rscf.ru/project/22-29-20208/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Anosov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, M.S., Shatagin, D.A., Romanov, A.D. et al. Using Acoustic Emission Pulses to Assess the Ductile–Brittle Transition Temperature of Aluminum Matrix Composites at Negative Temperatures. Russ. Engin. Res. 44, 356–359 (2024). https://doi.org/10.3103/S1068798X24700345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X24700345

Keywords:

Navigation