Skip to main content
Log in

Processes in an Oxygen–Methane Combustion Chamber with Gaseous Fuel

  • Published:
Russian Engineering Research Aims and scope

Abstract

The processes in an oxygen–methane combustion chamber with gaseous fuel are studied by three-dimensional numerical modeling. The advantages and disadvantages of the modeling method based on the gross reaction equation for the stoichiometric composition are considered. Eddy dissipation is considered as the model of combustion. The working fluid is assumed to be an ideal gas. The behavior in the combustion chamber according to modeling is analyzed. The results of three-dimensional modeling and thermodynamic analysis are compared. Recommendations are made for improving the design and efficiency of the combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Chudina, Yu.S., Operating processes in a low thrust rocket engine using gaseous propellant components oxygen and methane, Cand. Sci. (Eng.) Dissertation, Moscow, 2014.

  2. Vorob’ev, A.G., Borovik, I.N., and Kha, S., Analysis of nonstationary thermal state of a low-thrust liquid rocket engine taking into account injection, evaporation and combustion of liquid fuel droplets, Vestn. Samarsk. Gos. Aerokosm. Univ., 2014, no. 1 (43), pp. 41–55.

  3. Kozlov, A.A., Vorob’ev, A.G., and Borovik, I.N., Zhidkostnye raketnye dvigateli maloi tyagi (Low Thrust Liquid Rocket Engines), Moscow: Moscow Aviat. Inst., 2013.

  4. Vaulin, S.D. and Salich, V.L., The highly effective low thrust rocket engines designing methods, based on numerical simulation of intrachamber processes, Vestn. Yuzhno-Ural’sk. Gos. Univ., Ser. Mashinostr., 2012, vol. 19, no. 12, pp. 43–50.

    Google Scholar 

  5. Egorychev, V.S., Shablii, L.S., and Zubanov, V.M., Modelirovanie vnutrikamernogo rabochego protsessa RDMT na gazoobraznykh kislorode i vodorode v ANSYS CFX (Modeling of Intrachamber Operation Process of RDMT on Gaseous Oxygen and Hydrogen in ANSYS CFX), Samara: Samara Univ., 2016.

  6. Kozlov, A.A. and Strokach, E.A., Investigation of LRPE combustion chamber operational processes modeling technique based on eddy-dissipation approach, Vestn. Permsk. Nats. Issled. Politekh. Univ., 2016, no. 44, pp. 27–44.

  7. Chubenko, T.A., Maksimov, A.D., and Zubanov, V.M., Investigation of the working process in the chamber of a liquid rocket engine at different models of combustion of kerosene–oxygen fuel pair, Sbornik trudov mezhdunarodnoi molodezhnoi nauchnoi konferentsii k 100-letiyu so dnya rozhdeniya D.I. Kozlova “XV Korolevskie chteniya” (Proc. Int. Youth Sci. Conf. to the 100th Anniversary of D.I. Kozlov “XV Korolev Readings”), Samara: Korolev Samara State Aerosp. Univ., 2019, vol. 1, pp. 314–315.

  8. Chubenko, T.A. and Maksimov, A.D., Study of the working body flow process in the chamber of a liquid rocket engine under different models of combustion of an oxygen-hydrogen fuel pair, Sbornik rabot XLVII mezhdunarodnoi molodezhnoi nauchnoi konferentsii “XLVII Gagarinskie Chteniya” (Proc. XLVII Int. Youth Sci. Conf. “XLVII Gagarin Readings”), Moscow, 2021, pp. 193–194.

  9. Zhukov, V.P., Borovik, I.N., and Strokach, E.A., Numerical study of the influence of turbulent diffusion coefficients and turbulent Prandtl number on the reactive flow simulation in a combustor, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2020, no. 4, pp. 139–145.

  10. Borovik, I.N. and Strokach, E.A., Issledovaniya vnutrikamernykh protsessov v raketnykh dvigatelyakh malykh tyag na gazoobraznykh toplivakh (Studies of Intrachamber Processes in Low Thrust Rocket Engines Using Gaseous Propellants), Moscow: Moscow Aviat. Inst., 2021.

  11. Tyul’kov, K.V., Strokach, E.A., Borovik, I.N., et al., Numerical study of the effect of turbulent Schmidt number on the numerical simulation of processes in the multi-element GCH4–GO2 combustor, Russ. Aeronaut., 2021, vol. 64, no. 2, pp. 283–290. https://doi.org/10.3103/S1068799821020161

    Article  Google Scholar 

  12. Zhukov, V.P., Borovik, I.N., and Strokach, E.A., Numerical study of the influence of turbulent diffusion coefficients and turbulent Prandtl number on the reactive flow simulation in a combustor, Russ. Aeronaut., 2020, vol. 63, no. 4, pp. 713–720. https://doi.org/10.3103/S1068799820040200

    Article  Google Scholar 

  13. Sidlerov, D.A. and Fedorov, S.A., Numerical investigation of work cycle characteristics in the combustion chamber of a lox/methane liquid-propellant rocket engine featuring reductant power gas combustion, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser.Mashinostr., 2022, no. 2 (141), pp. 43–53. https://doi.org/10.18698/0236-3941-2022-2-43-53

  14. Starship SN15, SpaceX. https://www.spacex.com/vehicles/starship/.

  15. Spalding, D.B., Mixing and chemical reaction in steady confined turbulent flames, Symp. (Int.) Combust., 1971, vol. 13, no. 1, pp. 649–657. https://doi.org/10.1016/S0082-0784(71)80067-X

    Article  Google Scholar 

  16. Magnussen, B.F. and Hjertager, B.H., On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. (Int.) Combust., 1977, vol. 16, no. 1, pp. 719–729. https://doi.org/10.1016/S0082-0784(77)80366-4

    Article  Google Scholar 

  17. Gosman, A.D. and Ioannides, E., Aspects of computer simulation of liquid-fueled combustors, J. Energy, 1983, vol. 7, no. 6, pp. 482–490. https://doi.org/10.2514/3.62687

    Article  Google Scholar 

  18. Gosman, A.D., Pun, V.M., Runchal, A.K., Spalding, D.B., and Wolfshtein, M., Heat and Mass Transfer in Recirculating Flows, London: Academic, 1969.

    Google Scholar 

  19. Warnatz, J., Maas, U., and Dibble, R.W., Combustion. Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, Berlin–Heidelberg: Springer-Verlag, 1996. https://doi.org/10.1007/978-3-642-97668-1

  20. Rebrov, S.G., Golikov, A.N., Golubev, V.A., et al., Numerical simulation of mixing process in combustion chamber for laser ignition with hydrogen–oxygen and methane–oxygen propellants, Tr. Mosk. Aviats. Inst., 2013, no. 69, p. 13. https://trudymai.ru/eng/published.php?ID=43154&eng=Y.

  21. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid Rocket Engines. Fundamentals of Design), Moscow: Bauman Moscow State Tech. Univ., 2016.

  22. Mosolov, S.V. and Sidlerov, D.A., Comparative analyses of the peculiarities of the operational process in LRE combustion chambers with coaxial-jet and jet-centrifugal injectors using numerical simulation, Tr. Mosk. Aviats. Inst., 2012, no. 59, p. 7. https://trudymai.ru/eng/published.php?ID=34989&eng=Y.

  23. Mosolov, S.V., Sidlerov, D.A., Ponomarev, A.A., and Smirnov, Yu.L., Numerical research on the peculiarities of the operational process in LRE combustion chambers propelled by oxygen and hydrocarbons, Tr. Mosk. Aviats. Inst., 2012, no. 58, p. 15. https://trudymai.ru/eng/published.php?ID=33406.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ya. Mukambetov or I. N. Borovik.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukambetov, R.Y., Borovik, I.N. Processes in an Oxygen–Methane Combustion Chamber with Gaseous Fuel. Russ. Engin. Res. 44, 293–300 (2024). https://doi.org/10.3103/S1068798X24700217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X24700217

Keywords:

Navigation