Skip to main content
Log in

Feasibility of Controlling the Motion of Industrial Robots, CNC Machine Tools, and Mechatronic Systems. Part 2

  • Published:
Russian Engineering Research Aims and scope

Abstract

Real-time implementation of control systems is considered. The relationship between the complexity of the object being controlled and the duration of the control cycle is established: with increase in complexity, the cycle is shorter. That imposes stricter requirements on the speed of control systems. To meet those requirements, the speed of the electronic and other components of the control system may be increased, and the control architecture may be optimized. A promising approach to the real-time control of complex objects is to use memory-centric architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Zelenskii, A.A., Kuznetsov, A.P., Ilyukhin, Yu.V., and Gribkov, A.A., Feasibility of motion control of industrial robots, CNC machine tools and mechatronic systems. Part 1, Vestn. Mashinostr., 2022, no. 11, pp. 43–51. https://doi.org/10.36652/0042-4633-2022-11-43-51

  2. Fanuc Corporation, Brochures of FANUC’s products, 2011–2021. https://www.fanuc.co.jp/en/product/catalog/index.html

  3. ABB, ABB industrial robots, 2021. https://new.abb.com/products/robotics/industrial-robots

  4. ABB, ABB robotics: Product range, 2018. https://library.e.abb.com/public/07ddcb74ba6f42cf91f32f9041858eb5/ABB-Robotic-product-range-brochure-2018-RevE.pdf

  5. KUKA AG, Industrial robots from KUKA, 2021. https://www.kuka.com/en-de/products/robot-systems/industrial-robots

  6. Yaskawa Industrial Robots, America, Inc., 2021. https://www.motoman.com/en-us/products/robots/industrial

  7. Yaskawa Europe GmbH, Yaskawa: Catalogue of MOTOMAN robots, 2018. https://rtcontrol.com/wp-content/uploads/2018/03/yaskawa-robots.pdf

  8. DMG MORI, Machine overview, 2021. https://ru.dmgmori.com/products/machines

  9. Haas Automation, Inc., CNC machine tools, 2021. https://www.haascnc.com/index.html

  10. STAN Ltd., Metalworking equipment, 2021. https://www.stan-company.ru/catalog/metalloobrabatyvayushchee-oborudovanie/

  11. SLM Solutions, Industrial metal additive manufacturing machines, 2021. https://www.slm-solutions.com/products-and-solutions/machines/

  12. Aksis, CNC machining center: Description, general provisions, 2018–2020. https://www.axissteel.ru/centr-s-chpu/

  13. Sodick, Machine tools, 2021. https://www.sodick.co.jp/en/product/tool/

  14. VirtualExpo Group, EBM 3D printer A2X, 2021. https://pdf.directindustry.com/pdf/arcam/arcam-a2-system-platform/19734-644505.html

  15. Jinan Senfeng Laser Technology Co., Ltd., SF20040R: Ultra large metal laser cutter, 2021. https://www.sfcnclaser.com/ultra-large-metal-laser-cutter.html

  16. GF Machining Solutions Management SA, AgieCharmilles LASER P 600/1000/1200/4000 U, 2021. https://www.gfms.com/content/dam/gfms/pdf/laser/laser-p-u/en/agiecharmilles-laser-p-600-1000-1200-4000-u_en.pdf

  17. RuStan Ltd., Foton ABN-30R desktop laser metal marker, 2005–2021. https://rustan.ru/stanki/lazernye_stanki/lazernye_volokonnye_stanki_po_metallu/foton-ylh-30c

  18. Averin, G.V. and Zvyagintseva, A.V., The statistical and information entropy relationship when describing the complex system state, Nauchn. Vedom BelGU. Ser. Mat. Fiz., 2016, no. 20 (241), iss. 44, pp. 105–116.

  19. Dulesov, A.S., Semenova, M.Yu., and Khrustalev, V.I., Entropy properties of a technical system, Fundam. Issled., 2011, no. 8-3, pp. 631–636.

  20. Leiserson, C.E., Thompson, N.C., Emer, J.S., et al., There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science, 2020, vol. 368, p. 1079.

    Article  Google Scholar 

  21. Reshetnikova, M., The microchip deficit: how it arose and what is the threat to the electronics industry, Oct-ober 4, 2021. https://trends.rbc.ru/trends/industry/60ed32189a7947381fb9771e

  22. Koshkin, V.L., Apparatnye sistemy chislovogo programmnogo upravleniya (Hardware Numerical Control Systems), Moscow: Mashinostroenie, 1989.

  23. Heyn, J., Gümbel, P., Bobka, P., et al., Application of artificial neural networks in force-controlled automated assembly of complex shaped deformable components, Procedia CIRP, 2019, vol. 79, pp. 131–136.

    Article  Google Scholar 

  24. Kozhevnikov, V.V., Leont’ev, M.Yu., Prikhod’ko, V.V., et al., Neural network technologies for building intelligent robot control systems, Uch. Zap. Ul’yanovsk. Gos. Univ. Ser.: Mat. Inf. Tekhnol., 2019, no. 2, pp. 36–53.

  25. Jin, Z., Liu, L., Gong, D., and Li, L., Target recognition of industrial robots using machine vision in 5G environment, Front. Neurorobot., 2021, vol. 15, p. 624466. https://doi.org/10.3389/fnbot.2021.624466

    Article  Google Scholar 

  26. Bergamini, L., Sposato, M., Peruzzini, M., et al., Deep learning-based method for vision-guided robotic grasping of unknown objects, Adv. Eng. Inf., 2020, vol. 44, p. 101052.

    Article  Google Scholar 

  27. Kombarov, V.V., Aksenov, E.A., and Krizhivets, E.A., Determination of physical parameters of CNC machines execution units, Aviats.-Kosm. Tekh. Tekhnol., 2011, no. 7 (84), pp. 109–114.

  28. Bakhur, V., Intel unveiled big architectural changes in new generations of processors, August 19, 2021. https://www.cnews.ru/news/line/2021-08-19_intel_predstavila_bolshie_arhitekturnye

  29. Ezhova, N.A. and Sokolinskii, L.B., Survey of parallel computation models, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Vych. Mat. Inf., 2019, vol. 8, no. 3, pp. 58–91.

    Google Scholar 

  30. Juurlink, B. and Meenderinck, C., Amdahl’s law for predicting the future of multicores considered harmful, ACM SIGARCH Comput. Archit. News. 2012, vol. 40, no. 2, pp. 1–9.

    Article  Google Scholar 

  31. Zelenskii, A.A., Abdullin, T.K., Ilyukhin, Yu.V., et al., FPGA-based high-performance digital control system for multicoordinate machine tools and industrial robots, Russ. Eng. Res., 2020, vol. 40, pp. 58–60. https://doi.org/10.3103/S1068798X20010256

    Article  Google Scholar 

  32. Zelenskii, A.A., Khar’kov, M.A., Ivanovskii, S.P., et al., High-performance numerical control system based on programmable logic devices, Vestn. Voronezhsk. Gos. Tekh. Univ., 2018, vol. 14, no. 5, pp. 8–12.

    Google Scholar 

  33. Kalyaev, I. and Zaborovskii, V., Artificial intelligence: From metaphor to technical solutions, Control Eng. Rossiya, 2019, no. 5 (83), pp. 26–31.

  34. Kuznetsov, A.P., Trends in development and efficient production of machines. Part 1. Physical basis of production systems development, Stankoinstrument, 2021, no. 2, pp. 40–48.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FSFS-2021-0004 as a part of the program for fundamental research by educational institutions (2020–2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gribkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Part 1 may be found in Russian Engineering Research, no. 2, 2023.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenskiy, A.A., Kuznetsov, A.P., Ilyukhin, Y.V. et al. Feasibility of Controlling the Motion of Industrial Robots, CNC Machine Tools, and Mechatronic Systems. Part 2. Russ. Engin. Res. 43, 534–540 (2023). https://doi.org/10.3103/S1068798X23050489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X23050489

Keywords:

Navigation