Skip to main content
Log in

Floating Coastal Wave Power Generator: Analysis by Computational Fluid Dynamics

  • Published:
Russian Engineering Research Aims and scope

Abstract

Computational fluid dynamics may be used to simulate a floating coastal wave power generator. The computational fluid dynamic module is described, and its use in optimizing the generator design is illustrated. The stages of modeling are outlined, as well as the design stages, the necessary initial and boundary conditions, and the goals and results of the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Lavrov, N.P., Gidrotekhnicheskie sooruzheniya dlya malykh GES (Hydrotechnical Structures for Small Hydropower Plants), Bishkek: Kyrgyzsko-Ross. Slavyansk. Univ., 2001.

  2. Karelin, V.D. and Volshanik, V.V., Sooruzheniya i oborudovaniya malykh GES (Structures and Equipment of Small Hydropower Plants), Moscow: Energoatomizdat, 1986.

  3. Filonchikov, A.V., Proektirovanie avtomatizirovannykh vodozabornykh uzlov na gornykh rekakh (Designing Automated Water Intake Points on Mountain Rivers), Frunze: Kyrgyzstan, 1990.

  4. Tokombaev, K.A., Novye printsipy ispol’zovaniya vozobnovlyaemykh istochnikov energii v sel’skom khozyaistve (na primere Kirgizskoi SSR) (New Principles of Renewable Energy Use in Agriculture (the Example of the Kyrgyz SSR)), Frunze: Ilim, 1990.

  5. Triandafilov, A.F. and Efimova, S.G., Gidravlika i gidravlicheskie mashiny (Hydraulics and Hydraulic Machines), Syktyvkar: Syktyvkar Forest Inst., 2012.

  6. Lekomtsev, P.L., Niyazov, A.M., and Olin, N.L., Inzhenernye prikladnye programmy (Engineering Applications), Izhevsk: Izhevsk. Gos. S-kh. Akad., 2020.

  7. Khlopkov, Yu.I., Statisticheskoe modelirovanie v vychislitel’noi aerodinamike (Statistical Modeling in Computational Aerodynamics), Moscow: Azbuka-2000, 2006.

  8. Chizhiumov, S.D., Kozin, V.M., Kamenskikh, I.V., et al., Preobrazovanie energii morskikh voln (Sea Wave Energy Conversion), Komsomolsk-on-Amur: Komsomolsk-on-Amur Gos. Tekh. Univ., 2014.

  9. SP (Rule Set) 38.13330.2012: Loads and Impacts on Hydraulic Structures (from Wave, Ice and Ships). Updated Version of Building Codes 2.06.04-82, Moscow: FTsS, 2012.

  10. SP (Rule Set) 32-103-97: Code of Practice in Projecting of Coast Protecting Constructions, Moscow: TrabsStroi, 1998.

  11. Novak, P., Moffat, A.I.B., Nalluri, C., and Narayanan, R., Hydraulic Structures, London: Spon, 2001.

    Google Scholar 

Download references

Funding

Financial support was provided by the Russian Science Fund for the development of a wave power generator on the coastal shelf (grant 22-19-00424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zhelonkin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelonkin, M.V., Loskutov, A.B., Plekhov, A.S. et al. Floating Coastal Wave Power Generator: Analysis by Computational Fluid Dynamics. Russ. Engin. Res. 43, 226–232 (2023). https://doi.org/10.3103/S1068798X2304038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X2304038X

Keywords:

Navigation