Skip to main content
Log in

Stability Analysis of Metal-Cutting Control System by the Mikhailov Criterion

  • Published:
Russian Engineering Research Aims and scope

Abstract

Dynamic models of metal cutting using machine tools include a delayed argument, which prevents the use of algebraic stability criteria, such as the square-root, Hurwitz, and Routh criteria. However, the Nyquist and Mikhailov frequency criteria are applicable. A method is developed for the analysis of systems of differential equations using the Mikhailov frequency criterion. Experiments are conducted in Matlab software, which permits direct simulation and also stability analysis by means of the Mikhailov frequency criterion. The results show that the proposed approach to stability analysis may be widely employed to assess control systems for metal cutting using machine tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Tobias, S.A. and Fishwick, W., The chatter of lathe tools under orthogonal cutting conditions, Trans. Am. Soc. Mech. Eng., 1958, vol. 80, no. 5, pp. 1079–1087.

    Google Scholar 

  2. Tlusty, J. and Polacek, M., The stability of machine tools against self-excited vibrations in machining, Int. Res. Prod. Eng., 1963, vol. 1, pp. 465–474.

    Google Scholar 

  3. Namachchivaya, N.S. and Beddini, R., Spindle speed variation for the suppression of regenerative chatter, J. Nonlinear Sci., 2003, vol. 13, pp. 265–288. https://doi.org/10.1007/s00332-003-0518-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Wahi, P. and Chatterjee, A., Regenerative tool chatter near a codimension 2 Hopf point using multiple scales, Nonlinear Dyn., 2005, vol. 40, pp. 323–338. https://doi.org/10.1007/s11071-005-7292-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., and Ahmadian, M.T., Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: Forced oscillation and stability analysis, Mech. Mach. Theory, 2010, vol. 45, pp. 1050–1066. https://doi.org/10.1016/j.mechmachtheory.2010.03.014

    Article  MATH  Google Scholar 

  6. Litak, G., Chaotic vibrations in a regenerative cutting process, Chaos, Solitons Fractals, 2002, vol. 13, pp. 1531–1535. https://doi.org/10.1016/S0960-0779(01)00176-X

    Article  MATH  Google Scholar 

  7. Zakovorotny, V.L., Lapshin, V.P., and Babenko, T.S., Assessing the regenerative effect impact on the dynamics of deformation movements of the tool during turning, Procedia Eng., 2017, vol. 206, pp. 68–73. https://doi.org/10.1016/j.proeng.2017.10.439

    Article  Google Scholar 

  8. Pereda, A., Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion, IEEE Trans. Microwave Theory Tech., 2001, vol. 49, no. 2, pp. 377–381.

    Article  Google Scholar 

  9. Kolev, L. and Petrakieva, S., Interval Raus criterion for stability analysis of linear systems with dependent coefficients in the characteristic polynomial, Proc. 27th Int. Spring Sem. on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, IEEE, 2004, vol. 1, pp. 130–135.

    Google Scholar 

  10. Zakovorotny, V.L. and Gvindjiliya, V.E., Bifurcations of attracting sets of cutting tool deformation displacements at the evolution of treatment process properties, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 2018, vol. 26, no. 5, pp. 20–38.

    Google Scholar 

  11. Velieva, T.R., Kulyabov, D.S., Korolkova, A.V., and Zaryadov, I.S., The approach to investigation of the regions of self-oscillations, J. Phys.: Conf. Ser., 2017, vol. 937, p. 012057. https://doi.org/10.1088/1742-6596/937/1/012057

    Article  Google Scholar 

  12. Anh, N.D. et al., A dual criterion of stochastic linearization method for multi-degree-of-freedom systems subjected to random excitation, Acta Mech., 2012, vol. 223, no. 12, pp. 2667–2684.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sourdille, P., O’Dwyer, A., and Coyle, E., Smith predictor structure stability analysis using Mikhailov stability criterion, Proc. 4th Wismarer Automatisierungs Symp., Wismar, 2005, pp. 22–23.

  14. Saleh, A.I., Hasan, M.M.M., and Darwish, N.M.M., The Mikhailov stability criterion revisited, J. Eng. Sci., 2010, vol. 38, no. 1, pp. 195–207.

    Google Scholar 

  15. Barker, L.K., Mikhailov Stability Criterion for Time-Delayed Systems, 1979, no. NASA-TM-78803.

  16. Lapshin, V.P. et al., Influence of the temperature in the tool–workpiece contact zone on the deformational dynamics in turning, Russ. Eng. Res., 2020, vol. 40, no. 3, pp. 259–265.

    Article  Google Scholar 

  17. Astakhov, V.P., The assessment of cutting tool wear, Int. J. Mach. Tools Manuf., 2004, vol. 44, pp. 637–647. https://doi.org/10.1016/j.ijmachtools.2003.11.006

    Article  Google Scholar 

  18. Ryzhkin, A.A., Sinergetika iznashivaniya instrumental’nykh rezhushchikh materialov (triboelektricheskii aspekt): Monografiya (Synergetics of Wear of Tool Cutting Materials (Triboelectric Aspect): Monograph), Rostov-on-Don: Donsk. Gos. Tekh. Univ., 2004.

  19. Zakovorotny, V.L. and Gvindjiliya, V.E., Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone, Russ. Eng. Res., 2019, vol. 39, no. 5, pp. 423–430.

    Article  Google Scholar 

  20. Gouskov, A.M., Voronov, S.A., Paris, H., and Batzer, S.A., Nonlinear dynamics of a machining system with two interdependent delays, Commun. Nonlinear Sci. Numer. Simul., 2002, vol. 7, pp. 207–221. https://doi.org/10.1016/S1007-5704(02)00014-X

    Article  MATH  Google Scholar 

  21. Ryzhkin, A.A., Shuchev, K.G., and Klimov, M.M., Obrabotka materialov rezaniem: Uchebnoe posobie (Cutting of Materials: Manual), Rostov-on-Don: Feniks, 2008.

  22. Zakovorotny, V.L. and Gvindjiliya, V.E., Self-organization and evolution in dynamic friction systems, J. Vibroeng., 2021, vol. 23, no. 6, pp. 1418–1432.

    Article  Google Scholar 

  23. Makarov, A.D., Optimizatsiya protsessov rezaniya (Cutting Processes Optimization), Moscow: Mashinostroenie, 1976.

  24. Bordachev, E.V. and Lapshin, V.P., Mathematical temperature simulation in tool-to-work contact zone during metal turning, Vestn. Donsk. Gos. Tekh. Univ., 2019, vol. 19, no. 2, pp. 130–137.

    Google Scholar 

  25. Reznikov, A.N. and Reznikov, L.A., Teplovye protsessy v tekhnologicheskikh sistemakh (Thermal Processes in Technological Systems), Moscow: Mashinostroenie, 1990.

  26. Lapshin, V.P., Turning tool wear estimation based on the calculated parameter values of the thermodynamic subsystem of the cutting system, Materials, 2021, vol. 14, no. 21, p. 6492. https://doi.org/10.3390/ma14216492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Lapshin or I. A. Turkin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapshin, V.P., Turkin, I.A. Stability Analysis of Metal-Cutting Control System by the Mikhailov Criterion. Russ. Engin. Res. 43, 305–311 (2023). https://doi.org/10.3103/S1068798X23040184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X23040184

Keywords:

Navigation