Skip to main content
Log in

A Review of Analytical and Numerical Modeling of the Multi-axis Grinding of Helical Surfaces

  • Published:
Russian Engineering Research Aims and scope

Abstract

Different methods and approaches to multi-axis grinding require distinctly different operational modes, parameters and guidelines. In this work, based on a comprehensive analysis of manufacturing p-roducts with helical surfaces, guidelines for the rational choice of optimum maching schemes have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Semenchenko, I.I., Matyushin, V.M., and Sakharov, G.N., Proektirovanie metallorezhushchikh instrumentov (Design of Metal Cutting Tools), Moscow: Mashgiz, 1963.

  2. Grechishnikov, V.A., Profilirovanie instrumenta dlya obrabotki vintovykh poverkhnostei detalei po metodu sovmeshchennykh sechenii (Tool Profiling for Treatment of Screw Surfaces of the Parts by Combined Section Method), Moscow: Mosstankin, 1979.

  3. Zhang, W., Li, Z., Xiong, D., et al., Machining movement based analytical modelling of twist drill and its application, CIRP J. Manuf. Sci. Technol., 2013, vol. 6, pp. 13–21. https://doi.org/10.1016/j.cirpj.2012.07.001

    Article  Google Scholar 

  4. Kozhevnikov, D.V., Grechishnikov, V.A., Kirsanov, S.V., et al., Rezhushchii instrument: Uchebnik dlya vuzov (Cutting Tools: Manual for Higher Education Institutions), Kirsanov, S.V., Ed., Moscow: Mashinostroenie, 2005.

    Google Scholar 

  5. Lashnev, S.I. and Yulikov, M.I., Raschet i konstruirovanie metallorezhushchikh instrumentov s primeneniem EVM (Automated Calculations and Engineering of Metal Cutting Tools), Moscow: Mashinostroenie, 1975.

  6. Petukhov, Yu.E., Formoobrazovanie chislennymi metodami (Shaping by Numerical Methods), Moscow: Yanus-K, 2004.

  7. Ren, L., Wang, S., Lili, Y., Sun, S., An accurate method for five-axis flute grinding in cylindrical end-mills using standard 1V1/1A1 grinding wheels, Precis. Eng., 2015, vol. 43, pp. 387–394. https://doi.org/10.1016/j.precisioneng.2015.09.002

    Article  Google Scholar 

  8. Petukhov, Yu.E. and Domnin, P.V., Method of shaping a shaped helical surface with a standard straight profile tool, Vestn. Mosk. Gos. Tekhnol. Univ. “Stankin”, 2011, no. 3 (15), pp. 102–106.

  9. Li, G., Sun, J., and Li, J., Process modeling of end mill groove machining based on Boolean method, Int. J. Adv. Manuf. Technol., 2014, vol. 75, pp. 959–966. https://doi.org/10.1007/s00170-014-6187-7

    Article  Google Scholar 

  10. Kim, J.H., Park, J.W., and Ko, T.J., End mill design and machining via cutting simulation, Comput. Des., 2008, vol. 40, no. 3, pp. 324–333.

    Google Scholar 

  11. Uhlmann, E. and Hübert, C., Tool grinding of end mill cutting tools made from high performance ceramics, CIRP Ann., 2011, vol. 60, no. 1, pp. 359–362. https://doi.org/10.1016/j.cirp.2011.03.106

    Article  Google Scholar 

  12. Pivkin, P., Minin, I., Volosova, M., et al., Image processing of advance milling cutters to automate the measurement of the geometric parameters of the cutting edge on optical measuring systems, Proc. SPIE, 2021, vol. 11914, p. 1191412. https://doi.org/10.1117/12.2605754

    Article  Google Scholar 

  13. Ren, L., Xu, J., Zhang, X., et al., Determination of wheel position in flute grinding of cylindrical end-mills considering tolerances of flute parameters, J. Manuf. Processes, 2022, vol. 74, pp. 63–74. https://doi.org/10.1016/j.jmapro.2021.11.065

    Article  Google Scholar 

  14. Kang, D. and Armarego, E.J.A., Computer-aided geometrical analysis of the fluting operation for twist drill design and production. 1. Forward analysis and generated flute profile, Mach. Sci. Technol., 2007, vol. 7, no. 2, pp. 221–248.

    Article  Google Scholar 

  15. Grechishnikov, V.A. and Kirsanov, G.N., Designing disk tools for helical surface machining, Mashinostroitel’, 1978, no. 10, pp. 16–17.

  16. Zhang, W., Li, Z., Xiong, D., et al., Machining movement based analytical modelling of twist drill and its application, CIRP J. Manuf. Sci. Technol., 2013, vol. 6, pp. 13–21. https://doi.org/10.1016/j.cirpj.2012.07.001

    Article  Google Scholar 

  17. Zhang, W., Li, Z., Xiong, D., et al., Machining movement based analytical modelling of twist drill and its application, CIRP J. Manuf. Sci. Technol., 2013, vol. 6, pp. 13–21. https://doi.org/10.1016/j.cirpj.2012.07.001

    Article  Google Scholar 

  18. Xiao, S.L., Wang, L.M., Chen, Z.Z.C., et al., A new and accurate mathematical model for computer numerically controlled programming of 4Y1 wheels in 21/2-axis flute grinding of cylindrical end-mills, J. Manuf. Sci. Eng., 2013, vol. 135, no. 4, p. 041008. https://doi.org/10.1115/1.1023379

    Article  Google Scholar 

  19. Li, G., Liu, Z., Lu, J., et al., Big data-oriented wheel position and geometry calculation for cutting tool groove manufacturing based on AI algorithms, Int. J. Adv. Manuf. Technol., 2022, vol. 119, pp. 6717–6728. https://doi.org/10.1007/s00170-022-08749-5

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was conducted on equipment at the State Engineering Center of STANKIN Moscow Technological University.

Funding

Financial support was provided by the Russian Science Fund (project 22-19-00794).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Grechishnikov, P. M. Pivkin, A. A. Ershov or A. B. Nadykto.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechishnikov, V.A., Petukhov, Y.E., Pivkin, P.M. et al. A Review of Analytical and Numerical Modeling of the Multi-axis Grinding of Helical Surfaces. Russ. Engin. Res. 43, 359–363 (2023). https://doi.org/10.3103/S1068798X23040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X23040147

Keywords:

Navigation