Skip to main content
Log in

Feasibility of Controlling the Motion of Industrial Robots, CNC Machine Tools, and Mechatronic Systems. Part 1

  • Published:
Russian Engineering Research Aims and scope

Abstract

The feasibility of real-time control of complex motion is considered, with variation in the length of the control cycle, the velocity of the object, and the response time of the system. The condition governing the feasibility is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Gribkov, A.A., Pivkin, P.M., and Zelenskii, A.A., State industrial policy and the machine-tool industry, Russ. Eng. Res., 2021, vol. 41, pp. 342–346. https://doi.org/10.3103/S1068798X21040092

    Article  Google Scholar 

  2. Zelenskii, A.A., Morozkin, M.S., Panfilov, A.N., et al., Russian high-precision technological equipment import analysis, Izv. Tul’sk. Gos. Univ. Tekh. Nauki, 2021, no. 9, pp. 203–207.

  3. Belov, V.B., New paradigm of industrial development of Germany—strategy “Industry 4.0,” Sovr. Evropa, 2016, no. 5, pp. 11–21.

  4. Fuchs, C., Industry 4.0: the digital German ideology, TripleC: Commun., Capitalism, Critique, 2018, vol. 16, no. 1, pp. 280–289.

    Google Scholar 

  5. Suh, S.-H., Kang, S.-K., Chung, D.-H., et al., Theory and Design of CNC Systems, London: Springer, 2008.

    Book  MATH  Google Scholar 

  6. In-Process Correction Technology Added for Hybrid Metal 3D Printer, 2017 Amazing. https://additivemanufacturing.com/2017/07/11/sodick-announces-new-in-process-correction-technology-for-hybrid-metal-3d-printer/.

  7. Kozak, J. and Zakrzewski, T., Accuracy problems of additive manufacturing using SLS/SLM processes, AIP Conf. Proc., 2017, vol. 2017, no. 1, p. 020010. https://doi.org/10.1063/1.5056273

    Article  Google Scholar 

  8. Gokuldoss, P., Kolla, S., and Eckert, J., Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines, Materials, 2017, vol. 10, no. 6, p. 672. https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  9. Gruber, S., Grunert, C., Riede, V., et al., Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes, J. Laser Appl., 2020, vol. 32, p. 032016.

    Article  Google Scholar 

  10. 3D Metal Printer SLM Solutions NXG XII 600, Globatek JSC, 2008–2021. https://3d.globatek.ru/production/slm_nxg_xii_600/.

  11. Turomsha, V.I., High-speed power milling, Vestn. Polotsk. Gos. Univ., Ser. C, 2012, no. 3, pp. 56–64.

  12. Korop, A.D., Improving the efficiency of manufacturing titanium alloy parts, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Belgorod: Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2011.

  13. Zakhama, A., Charrabi, L., and Jelassi, K., Intelligent Selective Compliance Articulated Robot Arm robot with object recognition in a multi-agent manufacturing system, Int. J. Adv. Rob. Syst., 2019, pp. 1–15. https://doi.org/10.1177/1729881419841145

  14. Kuznetsov, A., The main objectives of formation in independent of imports machine tool industry in Russia, Stankoinstrument, 2016, no. 2, pp. 16–25.

  15. Poduraev, V.N., Avtomaticheski reguliruemye i kombiniruemye protsessy rezaniya (Automatically Adjustable and Combinable Cutting Processes), Moscow: Mashinostroenie, 1977.

  16. Kuznetsov, A., Directions of development of metal cutting machine: system principles. Part 1, Stankoinstrument, 2020, no. 3, pp. 30–41.

  17. Kuznetsov, A., Directions of development of metal-cutting machines: system principles. Part 2, Stankoinstrument, 2020, no. 4, pp. 36–45.

  18. Kuznetsov, A.P., Trends in development and efficient production of machines. Part 1. Physical basis of production systems development, Stankoinstrument, 2021, no. 2, pp. 40–48.

  19. Ayupov, V.V., Matematicheskoe modelirovanie tekhnicheskikh sistem: Uchebnoe posobie (Mathematical Modeling of Technical Systems: Manual), Perm’: Prokrost’, 2017.

  20. Tyutikov, V.V., Analysis of complexity factors in the synthesis of modal control systems, Izv. Taganrog. Radiotekh. Univ., 2005, no. 1, pp. 44–46.

  21. Krotov, V.F. et al., Osnovy teorii optimal’nogo upravleniya (Fundamentals of Optimal Control Theory), Moscow: Vysshaya Shkola, 1990.

  22. Il’yasov, B.G., Makarova, E.A., Zakieva, E.Sh., et al., Methodological foundations of modeling and intelligent management of an industrial complex as a complex dynamic multiagent object, Sovr. Naukoem. Tekhnol., 2020, no. 11-2, pp. 288–293.

  23. Knyazeva, E., Strategies of dynamic complexity management, Forsait, 2020, vol. 14, no. 4, pp. 34–45.

    Google Scholar 

  24. Gaides, M.A., Obshchaya teoriya sistem (sistemy i sistemnyi analiz) (General Theory of Systems (Systems and System Analysis)), Vinnitsa: Globus-Press, 2005.

  25. Zakharchuk, O.G., Application complexity assessment for optimization of management subsystems, Strateg. Biznes., 2014, no. 2 (4), pp. 29–38.

  26. Labinskii, A.Yu. and Afonin, P.N., The problem of use the neural networks for the automatic control system, Vestn. S.-Peterb. Univ. Gos. Protivopozhar. Sluzhby MChS Rossii, 2017, no. 2, pp. 100–106.

  27. Blagin, A.V., Blagina, L.V., Popova, I.G., et al., Entropy analysis of complex systems as a tool of engineering activity, Inzh. Vestn. Dona, 2018, no. 4 (51), pp. 288–293.

  28. Pugachev, V.S., Teoriya sluchainykh funktsii i ee primenenie k zadacham avtomaticheskogo upravleniya (Theory of Random Functions and Its Application to Automatic Control Problems), Moscow: Fizmatlit, 1960.

Download references

Funding

Financial support was provided by the Russian Ministry of Education and Science within the framework of a grant for fundamental research by educational establishments between 2022 and 2022 (project FSFS-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zelenskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenskiy, A.A., Kuznetsov, A.P., Ilyukhin, Y.V. et al. Feasibility of Controlling the Motion of Industrial Robots, CNC Machine Tools, and Mechatronic Systems. Part 1. Russ. Engin. Res. 43, 27–34 (2023). https://doi.org/10.3103/S1068798X23020260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X23020260

Keywords:

Navigation