Skip to main content
Log in

Determining the Machining Precision by a Graphical Method Based on Dimensional Relations

  • Published:
Russian Engineering Research Aims and scope

Abstract

The optimal dimensional relations in machining the cap of the rotary mechanism in an Acros 585 combine may be calculated by a graphical method. That clearly shows the dimensional chains and their relationships; permits formalized calculation of the dimensions, margins, and tolerances; and permits selection of appropriate basing and coordination options. In addition, the best sequence of surface machining may be identified, and the optimal technological process may be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Milovzorov, O.V., Realization of synthesis principles of technological processes using generalized structure on the basis of T-Flex technology, Vestn. Ryazansk. Gos. Radiotekh. Univ., 2015, no. 54-1, pp. 133–138. https://www.elibrary.ru/item.asp?id=25588833

  2. Lyutov, A.G., Ryabov, Yu.V., Shaidullin, R.I., et al., Intellectual control of processes of technological preparationof machine-building production, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Komp. Tekhnol., Upravl., Radioelektron., 2017, no. 3, pp. 117–124. https://doi.org/10.14529/ctcr170312. https://elibrary.ru/item.asp?id=29897007

  3. Novikov, O.A. and Baibakov, S.V., Method of selection of technological bases in the design of technological processes of mechanical processing, Upravl. Kachestv. Neftegaz. Kompl., 2009, no. 4, pp. 73–75. https://elibrary.ru/item.asp?id=12981272

  4. Baibakov, S.V., The system of complex automation of technological preparation of production, Progr. Prod. Sist., 2010, no. 1, p. 28. https://elibrary.ru/item.asp?id=14870189

  5. Kalyakulin, S.Yu., Kuz’min, V.V., Mitin, E.V., et al., Designing the structure of technological processes based on synthesis, Vestn. Mordovsk. Univ., 2018, vol. 28, no. 1, pp. 77–84. https://doi.org/10.15507/0236-2910.028.201801.077-084. https://elibrary.ru/item.asp?id=32606449

  6. Kuz’min, V.V. and Maksimovskii, D.E., Selection of technological bases based on solving the direct problem of dimensional analysis, Vestn. Mosk. Gos. Tekhnol. Univ. Stankin, 2012, no. 2, pp. 64–69. https://elibrary.ru/item.asp?id=17847920

  7. Maksimovskii, D.E., Automation of process design by design-technological parameterization, Russ. Eng. Res., 2011, vol. 31, no. 9, pp. 870–872. https://www.elibrary.ru/item.asp?id=18007917https://doi.org/10.3103/S1068798X1109019X

    Article  Google Scholar 

  8. Kalyakulin, S.Yu., Algorithm for calculating the parameters of the initial blank in the SITEP MO automated design system, Russ. Eng. Res., 2014, vol. 34, no. 11, pp. 713–715. https://elibrary.ru/item.asp?id=24009566https://doi.org/10.3103/S1068798X14110082

    Article  Google Scholar 

  9. Mitin, E.V., Sul’din, S.P., and Mitina, A.E., Formalization of the process of selecting technological bases for machining a spline shaft part using the geometric intermediate format IGS, Stanki Instrum., 2020, no. 3, pp. 37–40. https://www.elibrary.ru/item.asp?id=42629974

  10. Tsyrkov, A.V., Kuznetsov, P.M., Tsyrkov, G.A., et al., Project and operations management of machine-building production, Vestn. Mordovsk. Univ., 2018, vol. 28, no. 4, pp. 511–522. https://doi.org/10.15507/0236-2910.028.201804.511-522 https://www.elibrary.ru/item.asp?id=36551028

  11. Butko, A.O. and Kuznetsov, P.M., Creating of information models in integrated systems, Oboron. Kompl. Nauchno-Tekh. Progress., 2019, no. 3 (143), pp. 20–25. https://www.elibrary.ru/item.asp?id=40102929

  12. Moskvin, V.K. and Kuznetsov, P.M., Drive of the technological robot of the turning robotic complex, Tekhnol. Mashinostr., 2018, no. 11, pp. 45–48. https://elibrary.ru/item.asp?id=36808649

  13. Butko, A.O. and Kuznetsov, P.M., Predictive modeling the state of small-scale machine-building production, Inform. Tekhnol. Proekt. Proizvod., 2020, no. 4 (180), pp. 3–6. https://www.elibrary.ru/item.asp?id=44298306.

  14. Kuznetsov, P.M., Moskvin, V.K., and Fedorov, V.A., Information environment of technological processes’ maintenance of machine-building production, Vestn. Tambovsk. Univ. Ser. Estestv. Tekh. Nauki, 2017, vol. 22, no. 1, pp. 56–59. https://doi.org/10.20310/1810-0198-2017-22-1-56-59 https://www.elibrary.ru/item.asp?id=28821703.

  15. Kuznetsov, P.M. and Moskvin, V.K., Environmental management purposefully support manufacturing products, Inform. Tekhnol. Proekt. Proizvod., 2016, no. 1 (161), pp. 58–64. https://www.elibrary.ru/item.asp?id=26203215.

  16. Molchanova, E.I., Kuz’min, V.V., Korzhova, E.N., et al., Analysis of the samples with an unknown matrix using data mining algorithms, Inorg. Mater., 2017, vol. 53, no. 14, pp. 1454–1457. https://doi.org/10.1134/S0020168517140138 https://www.elibrary.ru/item.asp?id=35482331.

  17. Novikova, S.N., Uvarova, L.A., and Solomentsev, Y.M., The mathematical model for the formation of complex meso- and nanosystems with use of the Chapman–Kolmogorov equation, AIP Conf. Proc., 2019, vol. 2116, art. ID 040009. https://doi.org/10.1063/1.5114030 https://www.elibrary.ru/item.asp?id=41630943.

  18. Butko, A.O. and Kuznetsov, P.M., Predictive modeling the state of small-scale machine-building production, Inform. Tekhnol. Proekt. Proizvod., 2020, no. 4 (180), pp. 3–6. https://www.elibrary.ru/item.asp?id=44298306.

  19. Mitrofanov, V.G. and Kapitanov, A.V., Development of information model of the subject area of computer aided manufacturing, Vestn. Mosk. Gos. Tekhnol. Univ. Stankin, 2019, no. 2 (49), pp. 34–39. https://www.elibrary.ru/item.asp?id=40650681

  20. Timiryazev, V.A., Yurasov, S.Y., Kalashnikov, A.S., et al., Dialog-based calculation of dimensional relations between machine parts, Russ. Eng. Res., 2020, vol. 40, no. 1, pp. 61–63. https://www.elibrary.ru/item.asp?id=43262814.https://doi.org/10.3103/S1068798X20010207

    Article  Google Scholar 

  21. Skhirtladze, A.G. and Timiryazev, V.A., Wear value determination of location surface of T-shaped slots of readjusted attachment plates, Remont. Vosstan., Modern., 2020, no. 6, pp. 3–6. https://doi.org/10.31044/1684-2561-2020-0-6-3-6 https://www.elibrary.ru/item.asp?id=42995558.

  22. Khostikoev, M.Z., Danilov, I.K., Nabatnikov, Y.F., et al., Improving the performance of multipurpose machine tools, Russ. Eng. Res., 2019, vol. 39, no. 1, pp. 66–68. https://www.elibrary.ru/item.asp?id=41677437.https://doi.org/10.3103/S1068798X19010052

    Article  Google Scholar 

  23. Timiryazev, V.A., Khostikoev, M.Z., Konoplev, V.N., et al., Self-programming of the tool trajectory in CNC lathes, Russ. Eng. Res., 2019, vol. 39, no. 2, pp. 154–157. https://www.elibrary.ru/item.asp?id=41642590.https://doi.org/10.3103/S1068798X19020114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mitin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitin, E.V., Suldin, S.P., Ovchinnikov, A.Y. et al. Determining the Machining Precision by a Graphical Method Based on Dimensional Relations. Russ. Engin. Res. 42, 907–912 (2022). https://doi.org/10.3103/S1068798X22090179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22090179

Keywords:

Navigation