Skip to main content
Log in

Physical Aspects of Low-Temperature Fatigue

  • Published:
Russian Engineering Research Aims and scope

Abstract

The fatigue failure of metals at low temperatures is considered. In this case, fatigue failure is characterized by elastoplastic cyclic deformation with elevated yield point and increase in thermal conductivity of the metals. Deformation and slip of the dislocations over specific planes are localized within thin surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (The Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.

  2. Kabaldin, Yu.G., Shatagin, D.A., Anosov, M.S., et al., Otsenka i diagnostika strukturnoi ustoichivosti metallov pri nizkikh temperaturakh na osnove podkhodov nelineinoi dinamiki i iskusstvennogo intellekta: Monografiya (Assessment and Diagnostics of the Structural Stability of Metals at Low Temperatures Based on the Approaches of Nonlinear Dynamics and Artificial Intelligence: Monograph), Kabaldin, Yu.G., Ed., Nizhny Novgorod: Nizhegorodsk. Gos. Tekh. Univ. im. A.A. Alekseeva, 2017.

    Google Scholar 

  3. Koneva, N.A., Teplyakova, L.A., Sosnin, O.V., et al., Transformations of dislocation substructures under fatigue loading, Russ. Phys. J., 2002, vol. 45, pp. 303–318. https://doi.org/10.1023/A:1020348801518

    Article  Google Scholar 

  4. Panin, V.E., Likhachev, V.A., and Grinyaev, Yu.A., Strukturnye urovni deformatsii tverdykh tel (Structural Levels of Deformation in Solids), Novosibirsk: Nauka, 1985.

  5. Trefilov, V.I., Mil’man, Yu.V., and Firstov, S.A., Fizicheskie osnovy prochnosti tugoplavkikh metallov (Physical Basis of Strength of Refractory Metals), Kiev: Naukova Dumka, 1975.

  6. Nicolis, G. and Prigogine, I., Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, New York: Wiley, 1977.

    MATH  Google Scholar 

  7. Haken, H., Advanced Synergetics: Instability Hierarchies in Self-Organizing Systems and Devices, New York: Springer, 1983.

    Book  Google Scholar 

  8. Suzuki, T., Yoshinaga, H., and Takeuchi, S., Dislocation Dynamics and Plasticity, New York: Springer, 1991.

    Book  Google Scholar 

  9. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh: Spravochnik (Thermophysical Properties of Materials at Low Temperatures: Handbook), Moscow: Mashinostroenie, 1975.

  10. Klyavin, O.V., Plasticity and strength of solids in liquid helium, in Problemy prochnosti i plastichnosti tverdykh tel (Strength and Plasticity of Solids), Leningrad: Nauka, 1979, pp. 189, 200.

  11. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon, 1947.

    MATH  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Science Fund (grant 19-19-00332) with a focus on systems for monitoring damage to structural materials on the basis of artificial intelligence, so as to ensure safe operation of equipment in the Arctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Kabaldin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabaldin, Y.G., Khlybov, A.A., Anosov, M.S. et al. Physical Aspects of Low-Temperature Fatigue. Russ. Engin. Res. 42, 244–249 (2022). https://doi.org/10.3103/S1068798X2203008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X2203008X

Keywords:

Navigation