Skip to main content
Log in

Cavitation in Liquid Rotation

  • Published:
Russian Engineering Research Aims and scope

Abstract

In liquid rotation during ultrasound treatment, pressure due to the centrifugal force increases the total force on the cavitational bubbles, thereby increasing the power at collapse. Research on the erosive activity of ultrasound fields of different intensity under different centrifugal pressure shows that the activity is increased to 80 and 70% with treatment of low and high amplitude, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Prikhod’ko, V.M., Ul’trazvukovye tekhnologii pri proizvodstve, ekspluatatsii i remonte avtotraktornoi tekhniki (Use of Ultrasonic Technologies in Production, Operation, and Reparation of Automobile and Tractor Machines), Moscow: Tekhpoligraftsentr, 2003.

  2. Livanskiy, A.N., Prikhodko, V.M., Sundukov, S.K., and Fatyukhin, D.S., Research on the influence of ultrasonic vibrations on paint coating properties, Trans. FAMENA, 2016, vol. 40, no. 1, pp. 129–138.

    Google Scholar 

  3. Nigmetzyanov, R.I., Sundukov, S.K., Sukhov, A.V., and Fatyukhin, D.S., Ultrasonic production of detergent foams, Vestn. Mashinostr., 2018, no. 12, pp. 78–82.

  4. Livanskii, A.N., Nigmetzyanov, R.I., Sundukov, S.K., and Fatyukhin, D.S., Ultrasonic treatment of dispersed systems, Vestn. Mashinostr., 2017, no. 9, pp. 62–68.

  5. Chudina, O.V., Khachaturyan, V.A., and Pimanov, A.D., Electroplating the surface of constructional steels treated with ultrasound, Vestn. Mosk. Avtomob.-Dorozhn. Inst., 2014, no. 4 (39), pp. 42–47.

  6. Aleksandrov, V.A., Sundukov, S.K., Fatyukhin, D.S., and Filatova, A.A., Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting, Met. Sci. Heat Treat., 2018, vol. 60, nos. 5–6, pp. 381–386.

    Article  Google Scholar 

  7. Fizika i tekhnika moshchnogo ul’trazvuka. Kniga 3. Fizicheskie osnovy ul’trazvukovoi tekhnologii (Physics and Technique of Powerful Ultrasound, Book 3: Physical Principles of Ultrasound Technology), Rozenberg, L.D., Ed., Moscow: Nauka, 1970.

    Google Scholar 

  8. Panov, A.P. and Piskunov, Yu.F., Vysokoamplitudnaya ul’trazvukovaya ochistka (High-Amplitude Ultrasound Purification), Moscow: Mashinostroenie, 1980.

  9. Kazantsev, V.F., Kalachev, Yu.N., Nigmetzyanov, R.I., et al., Instrumenty dlya ul’trazvukovoi ochistki: monografiya (Instruments for Ultrasonic Cleaning: Monograph), Moscow: Tekhpoligraftsentr, 2017.

  10. Keller, O.K., Kratysh, G.S., and Lubyanitskii, G.D., Ul’trazvukovaya ochistka (Ultrasonic Cleaning), Leningrad: Mashinostroenie, 1975.

  11. Piskunov, Yu.F., Ultrasonic cleaning of precision parts, in Primenenie ul’trazvuka v promyshlennosti (Application of Ultrasound in Industry), Moscow: Mashinostroenie, 1975, pp. 181–209.

  12. Kitaigorodskii, Yu.I. and Yakhimovich, D.F., Inzhenernyi raschet ul’trazvukovykh kolebatel’nykh sistem (Engineering Calculation of Ultrasonic Vibration Systems), Moscow: Mashinostroenie, 1982.

  13. Kazantsev, V.F., Kuznetsov, S.Yu., Sundukov, S.K., et al., Ultrasound treatment of curved contours and complex surfaces, Russ. Eng. Res., 2017, vol. 37, no. 12, pp. 1074–1076.

    Article  Google Scholar 

  14. Gershgal, D.A. and Fridman, V.M., Ul’trazvukovaya tekhnologicheskaya apparatura (Ultrasonic Technological Equipment), Moscow: Energiya, 1976.

  15. Agranat, B.A., Dubrovin, M.N., Khavskii, N.N., and Eskin, G.I., Osnovy fiziki i tekhniki ul’trazvuka (Fundamentals of Physics and Technology of Ultrasound), Moscow: Vysshya Shkola, 1987.

  16. Kazantsev, V.F., Istochniki ul’trazvuka (Sources of Ultrasound), Moscow: Tekhpoligraftsentr, 2010.

  17. Sirotyuk, M.G., Ultrasonic cavitation, Akust. Zh., 1962, vol. 7, no. 3, pp. 255–272.

    Google Scholar 

  18. Sirotyuk, M.G., Akusticheskaya kavitatsiya (Acoustic Cavitation), Moscow: Nauka, 2008.

  19. Gorbachev, A.E., Nigmetzyanov, R.I., Sundukov, S.K., and Fatyukhin, D.S., RF Patent 2729519, 2020.

  20. Mason, T., Lindl, D., Davison, R., et al., Chemistry with Ultrasound, Mason, T., Ed., Amsterdam: Elsevier, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Sundukov, R. I. Nigmetzyanov, D. S. Fatyukhin or B. A. Kudryashov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundukov, S.K., Nigmetzyanov, R.I., Fatyukhin, D.S. et al. Cavitation in Liquid Rotation. Russ. Engin. Res. 42, 165–168 (2022). https://doi.org/10.3103/S1068798X22020241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22020241

Keywords:

Navigation