Skip to main content
Log in

Neural-Network Prediction of the Low-Temperature Fatigue Strength of Metals

  • Published:
Russian Engineering Research Aims and scope

Abstract

A smart system for predicting the fatigue strength of metals over a broad temperature range is developed on the basis of a specially trained neural network. The system can predict the number of loading cycles to failure and also the onset of fatigue-crack formation and the rate of crack growth in different test conditions, including low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.

  2. Ivanova, V.S., Ustalostnoe razrushenie metallov (Fatigue Destruction of Metals), Moscow: Metallurgizdat, 1963.

  3. Kabaldin, Yu.G., Shatagin, D.A., Anosov, M.S., et al., Otsenka i diagnostika strukturnoi ustoichivosti metallov pri nizkikh temperaturakh na osnove podkhodov nelineinoi dinamiki i iskusstvennogo intellekta (Assessment and Diagnostics of the Structural Stability of Metals at Low Temperatures Based on the Approaches of Nonlinear Dynamics and Artificial Intelligence), Kabaldin, Yu.G., Ed., Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ. im. A.A. Alekseeva, 2017.

    Google Scholar 

  4. Koneva, N.A., Teplyakova, L.A., Sosnin, O.V., et al., Transformations of dislocation substructures under fatigue loading, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 303–318.

    Article  Google Scholar 

  5. Aggarwal, C.C., Neural Networks and Deep Learning, Cham: Springer-Verlag, 2016.

    Google Scholar 

  6. Trefilov, V.I., Mil’man, Yu.V., and Firstov, S.A., Fizicheskie osnovy prochnosti tugoplavkikh metallov (Physical Basis of Strength of Refractory Metals), Kiev: Naukova Dumka, 1975.

  7. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh: Spravochnik (Thermophysical Properties of Materials at Low Temperatures: A Handbook), Moscow: Mashinostroenie, 1975.

  8. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford Univ. Press, 1959.

    MATH  Google Scholar 

  9. Klyavin, O.V., Plasticity and strength of solids in liquid helium, in Problemy prochnosti i plastichnosti tverdykh tel (Problems of Strength and Plasticity of Solids), Moscow: Nauka, 1979, pp. 189–200.

  10. Aleksandrov, V.V., Borzyak, A.I., Boyarskii, S.V., et al., Plastic deformation and destruction of metals at low temperatures, in Fiziko-mekhanicheskie i teplofizicheskie svoistva metallov (Physical-Mechanical and Thermophysical Properties of Metals), Moscow: Nauka, 1974, pp. 179–183.

Download references

Funding

Financial support was provided by the Russian Science Fund (project 20-79-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Kabaldin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabaldin, Y.G., Anosov, M.S., Shatagin, D.A. et al. Neural-Network Prediction of the Low-Temperature Fatigue Strength of Metals. Russ. Engin. Res. 42, 100–103 (2022). https://doi.org/10.3103/S1068798X22020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22020095

Keywords:

Navigation