Skip to main content
Log in

Distribution of Information Flows in Orbital Groupings for Remote Sensing of the Earth

  • Published:
Russian Engineering Research Aims and scope

Abstract

The distribution of target information fluxes in orbital groupings for remote sensing of the Earth is considered. An operational scenario is proposed for a remote sensing system, with the transfer of large quantities of information between the satellites in the system. An engineering formulation of the problem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Selin, V.A., Emelyanov, A.A., Sizov, O.S., et al., Medium-resolution optical range space images: consumer expectations, Izv. Atmos. Ocean. Phys., 2020, vol. 56, no. 9, pp. 1182–1189.

    Article  Google Scholar 

  2. Panteleimonov, I.N., Filatov, V.V., Aleshin, V.S., et al., Model of advanced communication system for transmitting space monitoring information to a ground-based complex for receiving and processing information, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2019, no. 12 (717), pp. 61–76.

  3. Shevchuk, R.B., Complexes for information receiving from Russian remote sensing satellites, Geomatika, 2012, no. 2, pp. 66–76.

  4. Emel’yanov, A.A., Malyshev, V.V., Smolyaninov, Yu.A., and Starkov, A.V., Upravlenie potokami tselevoi informatsii pri funktsionirovanii kosmicheskoi sistemy distantsionnogo zondirovaniya Zemli: Monografiya (Management of Target Information Flow during the Operation of the Earth Remote Sensing Space System: Monograph), Moscow: Mosk. Aviats. Inst., 2020.

  5. Malyshev, V.V., Krasil’shchikov, M.N., Bobronnikov, V.T., et al., Sputnikovye sistemy monitoringa. Analiz, sintez i upravlenie (Satellite Monitoring Systems: Analysis, Synthesis, and Control), Moscow: Mosk. Aviats. Inst., 2000.

  6. Malyshev, V.V. and Darnopykh, V.V., Operativnoe planirovanie tselevogo funktsionirovaniya kosmicheskikh sistem nablyudeniya i svyazi (Operational Planning of the Target Functioning of Space Observation and Communication Systems), Moscow: Mosk. Aviats. Inst., 2017.

  7. Leun, E.V., Leun, V.I., Sysoev, V.K., et al., The active control devices of the size of products based on sapphire measuring tips with three degrees of freedom, J. Phys.: Conf. Ser., 2018, vol. 944, art. ID 012073.

    Google Scholar 

  8. Zanin, K.A. and Moskatinev, I.V., Improvement of methods for evaluating the resolving power of a space synthetic aperture radar, Sol. Syst. Res., 2018, vol. 52, no. 7, pp. 666–672.

    Article  Google Scholar 

  9. Meshcheryakov, V.M., Braginets, V.F., and Sukhoi, Yu.G., The GLONASS orbit constellation architecture, which provides global fulfillment of promising requirements by the average value of the spatial geometric factor, Eng. J.: Sci. Innovation, 2018, no. 10, p. 12.

  10. Baranov, A.A., Razoumny, V.Y., Razoumny, Y.N., and Malyshev, V.V., Low orbit spacecraft service planning, Proc. 68th Int. Astronautical Congr. (IAC 2017) “Unlocking Imagination, Fostering Innovation and Strengthening Security,” Red Hook, NY: Curran Assoc., 2017, pp. 835–844.

  11. Baranov, A.A., Grishko, D.A., and Mayorova, V.I., The features of constellations’ formation and replenishment at near circular orbits in non-central gravity fields, Acta Astronaut., 2015, vol. 116, pp. 307–317.

    Article  Google Scholar 

  12. Krasil`shchikov, M.N., Malyshev, V.V., and Fedorov, A.V., Autonomous implementation of dynamic operations in a geostationary orbit. I. Formalization of control problem, J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 6, pp. 916–930.

    Article  MathSciNet  Google Scholar 

  13. Voiskovskii, A.P., Krasil’shchikov, M.N., Malyshev, V.V., et al., Autonomous implementation of dynamic operations in a geostationary orbit. II. Synthesis of control algorithms, J. Comput. Syst. Sci. Int., 2018, vol. 55, no. 6, pp. 948–968.

    Article  MathSciNet  Google Scholar 

  14. Golubev, S.I., Malyshev, V.V., Piyavskii, S.A., and Sypalo, K.I., Decision making in multicriteria problems at the image design stage of aviation rocket technique, J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 2, pp. 223–231.

    Article  Google Scholar 

  15. Brusov, V.S., Korchagin, P.O., Malyshev, V.V., and Piyavsky, S.A., Advanced “confident judgments” method when choosing multicriteria solutions in a multipurpose approach, J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 1, pp. 83–94.

    Article  Google Scholar 

  16. Grechkoseev, A.K., Krasil’shchikov, M.N., Kruzhkov, D.M., and Mararescul, T.A., Refining the Earth orientation parameters onboard spacecraft: concept and information technologies, J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 4, pp. 598–608.

    Article  Google Scholar 

  17. Petukhov, V.G., Application of the angular independent variable and its regularizing transformation in the problems of optimizing low-thrust trajectories, Cosm. Res., 2019, vol. 57, no. 5, pp. 351–363.

    Article  Google Scholar 

  18. Ivanyukhin, A.V. and Petukhov, V.G., Low-energy sub-optimal low-thrust trajectories to libration points and halo-orbits, Cosm. Res., 2019, vol. 57, no. 5, pp. 378–388.

    Article  Google Scholar 

  19. Petukhov, V.G., Ivanyukhin, A.V., and Wook, W.S., Joint optimization of control and main trajectory and design parameters of an interplanetary spacecraft with an electric propulsion system, Cosm. Res., 2019, vol. 57, no. 3, pp. 188–203.

    Article  Google Scholar 

  20. Bobronnikov, V. and Trifonov, M., Solving of the some special control problems of launch vehicle at the initial flight part using the AKOR method, AIP Conf. Proc., 2021, vol. 2318, art. ID 110003.

    Article  Google Scholar 

  21. Zay Yar Win, Malyshev, V.V., Bobronnikov, V. T., and Starkov, A.V., The joint solution of problem of evasion and keeping in a neighborhood reference orbit, Adv. Astronaut. Sci., 2018, vol. 170, pp. 433–442.

    Google Scholar 

  22. Malyshev, V.V., Starkov, A.V., and Fedorov, A.V., Orbital corrections of space vehicles while performing dynamic operations, J. Comput. Syst. Sci. Int., 2013, vol. 52, no. 2, pp. 313–325.

    Article  Google Scholar 

  23. Malyshev, V.V., Starkov, A.V., and Zay Yar Win, The decision of problems of evasion when holding the geostationary satellites in the neighborhood of the reference orbit, J. Adv. Res. Dyn. Control Syst., 2018, vol. 10, no. 13, pp. 53–58.

    Google Scholar 

  24. Razoumny, Y., Razoumny, V., Kozlov, P., et al., Method of optimization of the servicing space-based system orbits and detached units maneuvers parameters in the problem of on-orbit-servicing of the given multi-satellite space infrastructure, Proc. 67th Int. Astronautical Congr. (IAC 2016), Guadalajara, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Starkov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.A., Starkov, A.V., Belousov, I.A. et al. Distribution of Information Flows in Orbital Groupings for Remote Sensing of the Earth. Russ. Engin. Res. 42, 78–81 (2022). https://doi.org/10.3103/S1068798X22010154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22010154

Keywords:

Navigation