Skip to main content
Log in

Reconfiguring the Metal-Hydride Linear Drive

  • Published:
Russian Engineering Research Aims and scope

Abstract

A new design is proposed for a linear metal-hydride drive: the thermoelectric hydrogen sorption–desorption system based on the Peltier effect is placed inside the working chambers. Various drives with this configuration are compared with existing linear metal-hydride drives. Recommendations are made regarding the practical use of such drives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Graham, T., On the occlusion of hydrogen gas by metals, Proc. R. Soc. Lond., 1868, vol. 16, p. 422.

    Article  Google Scholar 

  2. Yakovlev, V.A., Thomas Graham, in Entsiklopedicheskii slovar’ Brokgauza i Efrona (Encyclopedic Dictionary of Brockhaus and Efron), St. Petersburg, 1893, vol. 9a, pp. 598–599.

  3. Mueller, W.M., Blackledge, J.P., and Libowitz, G.G., Metal Hydrides, New York: Academic, 1968.

    Google Scholar 

  4. Kremnev, F.S., Karyagin, V.P., Balyberdin, V.V., et al., Aerostaty v atmosfere Venery (Aerostats in the Atmosphere of Venus), Kiev: Naukova Dumka, 1985.

  5. Ivlev, V.I. and Kreinin, G.V., Thermal drives with phase transformation of the working body, Probl. Mashinostr. Nadezhnosti Mash., 1994, no. 4, pp. 7–14.

  6. Dantzer, P., Metal-hydride technology: a critical review, in Hydrogen in Metals III: Properties and Applications, Wipf, H., Ed., Topics in Applied Phys., vol. 73, Berlin: Springer-Verlag, 1997, pp. 279–340.

  7. Izhvanov, L.A. and Solovei, A.I., Development of hydride heat pumps, Ross. Khim. Zh., 2001, vol. 45, nos. 5–6, pp. 112–118.

    Google Scholar 

  8. Lloyd, G.M. and Kim, K.J., Smart hydrogen/metal hydride actuator, Int. J. Hydrogen Energy, 2007, vol. 32, no. 2, pp. 247–255.

    Article  Google Scholar 

  9. Mordovin, V.P. and Omarov, A.Yu., Hydrogen storage alloys based on LaNi5 compound: application in gas (thermosorption) drive, Materialovedenie, 2009, no. 10, pp. 17–24.

  10. Ivlev, V.I. and Bozrov, V.M., Thermosorption actuators of linear and rotary action principle, Privodnaya Tekh., 2010, no. 4, pp. 20–24.

  11. Bhuiya, M.M.H., Kumar, A., and Kim, K.J., Metal hydrides in engineering systems, processes and devices: a review of non-storage applications, Int. J. Hydrogen Energy, 2015, vol. 40, no. 5, pp. 2231–2247.

    Article  Google Scholar 

  12. Muthukumar, P., Kumar, A., Raju, N.N., et al., A critical review on design aspects and developmental status of metal hydride based thermal machines, Int. J. Hydrogen Energy, 2018, vol. 43, no. 37, pp. 17753–17779.

    Article  Google Scholar 

  13. Nomura, K., Ishido, Y., and Ono, S., A novel thermal engine using metal hydride, Energy Convers., 1979, vol. 19, pp. 49–57.

    Article  Google Scholar 

  14. Hosono, M., Sakaki, K., Nakamura, Y., and Ino, S., Metal hydride actuator for a rescue jack driven by hydrogen desorption, Int. J. Hydrogen Energy, 2019, vol. 44, no. 55, pp. 29310–29318.

    Article  Google Scholar 

  15. Vanderhoff, A. and Kim, K.J., Experimental study of a metal hydride driven braided artificial pneumatic muscle, Smart Mater. Struct., 2009, vol. 18, no. 12, art. ID 125014.

    Article  Google Scholar 

  16. Ivlev, and V.I. and Misyurin, S.Yu., One-side gas actuator with thermosorption power supply, Probl. Mashinostr. Avtom., 2007, no. 4, pp. 84–86.

  17. Vasin, V.A., Pumps and thermosorption compressors based on hydrogen storage alloys for vacuum equipment, Konstr. Kompoz. Mater., 2008, no. 3, pp. 52–57.

  18. Ino, S., Sato, M., Hosono, M., and Izumi, T., Development of a soft metal hydride actuator using a laminate bellows for rehabilitation systems, Sens. Actuators, B, 2009, vol. 136, no. 1, pp. 86–91.

    Article  Google Scholar 

  19. Hosono, M., Ino, S., Sato, M., et al., A system utilizing metal hydride actuators to achieve passive motion of toe joints for prevention of pressure ulcers: a pilot study, Rehabil. Res. Pract., 2012, vol. 2012, art. ID 541383.

    Google Scholar 

  20. Ino, S. and Sato, M., A novel soft actuator using metal hydride materials and its applications in quality-of-life technology, in New Developments in Biomedical Engineering, Rijeka: InTech, 2010, chap. 27, pp. 499–515.

    Google Scholar 

  21. Baranov, V.V. and Baranov, A.V., RF Patent 2282040, Byull. Izobret., 2006, no. 23.

  22. Percy, S., Knight, C., McGarry, S., et al., Thermal Energy Harvesting for Application at MEMS Scale, New York: Springer-Verlag, 2014.

    Book  Google Scholar 

  23. Wakisaka, Y., Muro, M., Kabutomori, T., et al., Application of hydrogen absorbing alloys to medical and rehabilitation equipment, IEEE Trans. Rehabil. Eng., 1997, vol. 5, no. 2, pp. 148–157.

    Article  Google Scholar 

  24. Sasaki, T., Kawashima, T., Aoyama, H., et al., Development of an actuator using a metal hydride and its application to a lifter for the disabled, Adv. Rob., 1987, vol. 2, no. 3, pp. 277–286.

    Article  Google Scholar 

  25. Kurosaki, K., Maruyama, T., Takahashi, K., et al., Design and development of MH actuator system, Sens. Actuators, A, 2004, vol. 113, pp. 118–123.

    Article  Google Scholar 

  26. Bhuiya, M.M.H. and Kim, K.J., Performance study of a hydrogen powered metal hydride actuator, Smart Mater. Struct., 2016, vol. 25, no. 4, art. ID 045004.

    Article  Google Scholar 

  27. Kim, K., Kim, S.H., Kim, S.H., and Yu, C.H., Hydrogen-absorbing alloy-based metal-hydride actuation for application in rehabilitative systems, Technol. Health Care, 2018, vol. 26, suppl. 1, pp. 43–53.

    Article  Google Scholar 

  28. Shin, M.Y., Chong, W.S., Yu, C.H., Study on an actuation system development using temperature control of metal hydrides, Technol. Health Care, 2020, vol. 28, suppl. 1, pp. 115–122.

    Article  Google Scholar 

  29. Sayapin, S.N. and Sokolov, A.I., RF Patent 2499163, Byull. Izobret., 2013, no. 32.

  30. Sayapin, S.N., Sinev, A.V., Pashkov, A.I., Kuplinova, G.S., and Fomin, L.F., RF Patent 2328611, Byull. Izobret., 2008, no. 19.

  31. Sayapin, S.N., Control system for the Stirling engine, Russ. Eng. Res., 2017, vol. 37, no. 10, pp. 841–844.

    Article  Google Scholar 

  32. Sayapin, S.N., Sinev, A.V., Lebedev, V.N., et al., The system of precision angular orientation and stabilization of the rotating antenna of the aerostat-based radar station, Probl. Mashinostr. Nadezhnosti Mash., 2006, no. 2, pp. 95–101.

  33. Gradetskii, V.G., Veshnikov, V.B., Kalinichenko, S.V., et al., Upravlyaemoe dvizhenie mobil’nykh robotov po proizvol’no orientirovannym v prostranstve poverkhnostyam (Controlled Movement of Mobile Robots on Surfaces Arbitrarily Oriented in Space), Moscow: Nauka, 2001, pp. 299–300.

Download references

Funding

The work was supported by the Presidium of the Russian Academy of Sciences, within the scope of fundamental research program 15 (2018–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sayapin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayapin, S.N. Reconfiguring the Metal-Hydride Linear Drive. Russ. Engin. Res. 41, 1149–1155 (2021). https://doi.org/10.3103/S1068798X21120376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X21120376

Keywords:

Navigation