Skip to main content
Log in

Design of Spatial Deployable Modular Constructions Based on Planar Kinematic Chains

  • Published:
Russian Engineering Research Aims and scope

Abstract

The article presents a method for designing spatial deployable modular constructions synthesized on the basis of planar kinematic chains with rotational joints. The proposed constructions have closed loops along the horizontal and vertical dimensions and provide a multiple increase in their internal volume and longitudinal dimension. The authors have created computer-aided design models of these constructions and presented an algorithm of their kinematic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sarrus, P., Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires: et rèciproquement, C.R. Acad. Sci., 1853, vol. 36, pp. 1036–1038.

    Google Scholar 

  2. Waldron, K.J., Hybrid overconstrained linkages, J. Mech., 1968, vol. 3, no. 2, pp. 73–78.

    Google Scholar 

  3. Baker, J.E., On 5-revolute linkages with parallel adjacent joint axes, Mech. Mach. Theory, 1984, vol. 19, no. 6, pp. 467–475.

    Article  Google Scholar 

  4. Sahai, R., Avadhanula, S., Groff, R., et al., Towards a 3G crawling robot through the integration of microrobot technologies, Proc. 2006 IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Red Hook, NY: Curran Assoc., 2006, pp. 296–302.

  5. Hoffman, K.L. and Wood, R.J., Myriapod-like ambulation of a segmented microrobot, Auton. Rob., 2011, vol. 31, pp. 103–114.

    Article  Google Scholar 

  6. Yim, S. and Sitti, M., Design and analysis of a magnetically actuated and compliant capsule endoscopic robot, Proc. 2011 IEEE Int. Conf. on Robotics and Automation, Red Hook, NY: Curran Assoc., 2011, pp. 4810–4815.

  7. Lu, S., Zlatanov, D., Ding, X., Molfino, R., and Zoppi, M., Novel deployable mechanisms with decoupled degrees of freedom, J. Mech. Rob., 2016, vol. 8, art. ID 021008.

  8. Wohlhart, K.J., Double-chain mechanisms, multi-parallelogram linkages and their spatial counterparts, Solid Mech. Appl., 2000, vol. 80, pp. 457–466.

    Google Scholar 

  9. Fraux, V., Lawton, M., Reveles, J.R., et al., Novel large deployable antenna backing structure concepts for foldable reflectors, CEAS Space J., 2013, vol. 5, nos. 3–4, pp. 195–201.

    Article  Google Scholar 

  10. Yang, S. and Li, Y., Kinematic analysis of deployable parallel mechanisms, Proc. Inst. Mech. Eng., Part C, 2020, vol. 234, no. 1, pp. 263–272.

    Google Scholar 

  11. Bricard, R., Lecons De Cinematique, Vol. 2: Cinematique Appliquee, Paris: Gauthier-Villars, 1927, pp. 7–12.

    MATH  Google Scholar 

  12. Chen, Y., You, Z., and Tarnai, T., Threefold-symmetric bricard linkages for deployable structures, Int. J. Solids Struct., 2005, vol. 42, pp. 2287–2301.

    Article  Google Scholar 

  13. Viquerat, A.D., Hutt, T., and Guest, S.D., A plane symmetric 6R foldable ring, Mech. Mach. Theory, 2013, vol. 63, pp. 73–88.

    Article  Google Scholar 

  14. Schönke, J. and Fried, E., Single degree of freedom everting ring linkages with nonorientable topology, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 1, pp. 90–95.

    Article  MathSciNet  Google Scholar 

  15. Myard, F.E., Contribution a la geometrie des systemes articules, Bull. Soc. Math. France, 1931, vol. 59, pp. 183–210.

    Article  MathSciNet  Google Scholar 

  16. Bennett, G.T., A new mechanism, Engineering, 1903, vol. 76, pp. 778–783.

    Google Scholar 

  17. Qi, X., Deng, Z., Li, B., et al., Design and optimization of large deployable mechanism constructed by Myard linkages, CEAS Space J., 2013, vol. 5, pp. 147–155.

    Article  Google Scholar 

  18. Huang, H., Deng, Z., and Li, B., Mobile assemblies of large deployable mechanisms, J. Space Eng., 2012, vol. 5, no. 1, pp. 1–14.

    Article  Google Scholar 

  19. Hoberman, C., US Patent 4 942 700, 1990.

  20. García-Mora, C.J. and Sánchez-Sánchez, J., Geometric method to design bistable and non-bistable deployable structures of straight scissors based on the convergence surface, Mech. Mach. Theory, 2020, vol. 146, art. ID 103720.

  21. Zhao, J.-S., Chu, F.L., and Feng, Z.-J., The mechanism theory and application of deployable structures based on SLE, Mech. Mach. Theory, 2009, vol. 44, pp. 324–335.

    Article  Google Scholar 

  22. Hoberman, C., US Patent 7 794 019, 2010.

  23. Kanemitsu, T., Matsumoto, S., Namba, H., et al., Self-deployable antenna using centrifugal force, Solid Mech. Appl., 2000, vol. 80, pp. 173–182.

    Google Scholar 

  24. Gan, W.W. and Pellegrino, S., Numerical approach to the kinematic analysis of deployable structures forming a closed loop, Proc. Inst. Mech. Eng., Part C, 2006, vol. 220, no. 7, pp. 1045–1056.

    Google Scholar 

  25. Kiper, G., Soylemez, E., and Kisisel, A.U.O., A Family of deployable polygons and polyhedral, Mech. Mach. Theory, 2008, vol. 43, pp. 627–640.

    Article  Google Scholar 

  26. Chen, Y., Peng, R., and You, Z., Origami of thick panels, Science, 2015, vol. 349, no. 6246, pp. 396–400.

    Article  Google Scholar 

  27. Wei, G. and Dai, J.S., Origami-inspired integrated planar-spherical overconstrained mechanisms, J. Mech. Des., 2014, vol. 136, no. 5, art. ID 051003.

    Google Scholar 

  28. Mintchev, S., Salerno, M., Cherpillod, A., et al., A portable three-degrees-of-freedom force feedback origami robot for human–robot interactions, Nat. Mach. Intell., 2019, vol. 1, pp. 584–593.

    Article  Google Scholar 

  29. Fomin, A., Petelin, D., and Jahr, A., Synthesis and analysis of a novel linkage mechanism with the helical motion of the end-effector, Robotics, 2020, vol. 9, no. 3, p. 53.

    Article  Google Scholar 

  30. Lee, C. and Yan, H., Movable spatial 6R mechanisms with three adjacent parallel axes, J. Mech. Des., 1993, vol. 115, no. 3, pp. 522–529.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian President Grant, research project no. MK-2781.2019.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fomin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, A.S., Petelin, D.V. Design of Spatial Deployable Modular Constructions Based on Planar Kinematic Chains. Russ. Engin. Res. 41, 1242–1246 (2021). https://doi.org/10.3103/S1068798X21120145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X21120145

Keywords:

Navigation