Skip to main content
Log in

Dynamics of Tool Deformation in the Cutting System

  • Published:
Russian Engineering Research Aims and scope

Abstract

The dynamic reorganization of the deformational displacements in the cutting system during its evolution is considered. In the present work, instead of regarding dynamic reorganization as due to specified change in the parameters—for instance, the workpiece rigidity—parameter evolution is treated as a natural process associated with irreversible energy transformation in the machine zone. In that case, the dynamic relationships formed in the process depend on the work and power of irreversible transformations at contact of the tool faces with the workpiece and also in the chip-formation zone. Therefore, the parameters of such relationships will depend on the work and power trajectories of the irreversible transformations in those regions. On the one hand, the parameters depend on those trajectories; on the other, change in those parameters affects the work and power of the irreversible transformations. In the present work, the goal is to model this functionally coupled dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Haken, H., Erfolgsgeheimnisse der Natur. Synergetik: Die Lehre vom Zusammenwirken, Stuttgart: Deutsche Verlags-Anstalt, 1981.

    Google Scholar 

  2. Prigogine, I., From Being to Becoming: Time and Complexity in the Physical Sciences, San Francisco: W.H. Freeman, 1980.

    Google Scholar 

  3. Prigogine, I. and Stengers, I., Order Out of Chaos: Man’s New Dialogue with Nature, New York: Bantam Books, 1984.

    Google Scholar 

  4. Zakovorotnyi, V.L. and Flek, M.B., Dinamika protsessa rezaniya. Sinergeticheskii podkhod (Dynamics of Cutting Process: Synergetic Approach), Rostov-on-Don: Terra,2006.

  5. Zakovorotnyi, V.L., Luk’yanov, A.D., Nguen, D.-A., and Fam, D.T., Sinergeticheskii sistemnyi sintez upravlyaemoi dinamiki metallorezhushchikh stankov s uchetom evolyutsii svyazei (Synergetic System Synthesis of Controlled Dynamics of Metal Cutting Machines, Taking into Account the Evolution of Relations), Rostov-on-Don: Donsk. Gos. Tekh. Univ., 2008.

  6. Hahn, R.S., On the Theory of Regenerative Chatter in Precision Grinding Operation, Trans. ASME, 1954, vol. 76, pp. 356–260.

    Google Scholar 

  7. Kudinov, V.A., Dinamika stankov (Dynamics of Machines), Moscow: Mashinostroenie, 1967.

  8. Tlustý, J. and Ismail, F., Basic non-linearity in machining chatter, Ann. CIRP, 1981, vol. 30, pp. 299–304.

    Article  Google Scholar 

  9. Tlustý, J., Samobuzené Kmity v Obrábecích Strojích, Prague: Cesk. Akad. Ved., 1954.

  10. Tobias, S.A., Machine Tool Vibrations, London: Blackie, 1965.

    Google Scholar 

  11. Veits, V.L. and Vastil’kov, D.V., Dynamics, modeling, and quality maintenance at the machine treatment of small hard billets, Stanki Instrum., 1999, no. 6, pp. 9–13.

  12. Voronov, S.A., Nepochatov, A.V., and Kiselev, I.A., Assessment criteria of stability of milling of non-rigid parts, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2011, no. 1 (610), pp. 50–62.

  13. Guskov, A.G., Guskov, M.A., Dinh Dyk Tung, and Panovko, G.Ya., Modeling and investigation of the stability of a multicutter turning process by a trace, J. Mach. Manuf. Reliab., 2018, vol. 47, no. 4, pp. 317–323.

    Article  Google Scholar 

  14. Gorodetskii, Yu.I., Theory of nonlinear fluctuations and machine dynamics, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, Ser.: Matem. Model. Optim. Upr., 2001, no. 2, pp. 69–88.

  15. Balachandran, B., Nonlinear dynamics of milling process, Philos. Trans. R. Soc., A, 2001, vol. 359, pp. 793–819.

  16. Litak, G., Chaotic vibrations in a regenerative cutting process, Chaos, Solitons Fractals, 2002, vol. 13, pp. 1531–1535.

    Article  Google Scholar 

  17. Litak, G. and Rusinek, R., Dynamics of a stainless steel turning process by statistical and recurrence analyses, Mechanic, 2012, vol. 47, pp. 1517–1526.

    Article  Google Scholar 

  18. Namachchivaya, N.S. and Beddini, R., Spindle speed variation for the suppression of regenerative chatter, J. Nonlinear Sci., 2003, vol. 13, pp. 265–288.

    Article  MathSciNet  Google Scholar 

  19. Wahi, P. and Chatterjee, A., Self-interrupted regenerative metal cutting in turning, J. Nonlinear Mech., 2008, vol. 43, pp. 111–123.

    Article  Google Scholar 

  20. Warminski, J., Litak, G., Lipski, J., et al., Chaotic vibrations in regenerative cutting process, Proc. IUTAM/IFToMM Symp. on Synthesis of Nonlinear Dynamical Systems, Riga, Latvia, August 24–28, 1998, Dordrecht: Springer-Verlag, 2000, vol. 73, pp. 275–284.

  21. Stépán, G., Szalai, R., and Insperger, T., Nonlinear dynamics of high-speed milling subjected to regenerative effect, in Nonlinear Dynamics of Production Systems, Radons, G. and Neugebauer, R., Eds., Weinheim: Wiley, 2004, pp. 111–127.

    MATH  Google Scholar 

  22. Stépán, G., Modeling nonlinear regenerative effects in metal cutting, Philos. Trans. R. Soc., A, 2001, vol. 359, pp. 739–757.

  23. Gouskov, A.M., Voronov, S.A., Paris, H., and Batzer, S.A., Nonlinear dynamics of a machining system with two interdependent delays, Commun. Nonlinear Sci. Numer. Simul., 2002, vol. 7, pp. 207–221.

    Article  Google Scholar 

  24. Voronov, S.A. and Kiselev, I.A., Nonlinear dynamic problems for cutting processes, Mashinostr., Inzh. Obraz., 2017, no. 2 (51), pp. 9–23.

  25. Vasin, S.A. and Vasin, L.A., The nature of the occurrence and development of auto-oscillations during turning: synergistic approach, Naukoemkie Tekhnol. Mashinostr., 2012, no. 1, pp. 11–16.

  26. Rusinek, R., Wiercigroch, M., and Wahi, P., Influence of tool flank forces on complex dynamics of cutting process, Int. J. Bifurcation Chaos, 2014, vol. 24, no. 9, art. ID 1450115.

    Article  MathSciNet  Google Scholar 

  27. Rusinek, R., Wiercigroch, M., and Wahi, P., Modeling of frictional chatter in metal cutting, Int. J. Mech. Sci., 2014, vol. 89, pp. 167–176. https://doi.org/10.1016/j.ijmecsci.2014.08.020

    Article  Google Scholar 

  28. Zakovorotnyi, V.L. and Fam, T.Kh., Parametric self-excitation of dynamics system of cutting, Vestn. Donsk. Gos. Tekh. Univ., 2013, nos. 5–6, pp. 97–103.

  29. Grabec, I., Chaos generated by the cutting process, Phys. Lett. A, 1986, vol. 117, pp. 384–386.

    Article  MathSciNet  Google Scholar 

  30. Lipski, J., Litak, G., Rusinek, R., et al., Surface quality of a work material’s influence on the vibrations of the cutting process, J. Sound Vib., 2002, vol. 252, pp. 737–739.

    Article  Google Scholar 

  31. Wiercigroch, M. and Budak, E., Sources of nonlinearities, chatter generation and suppression in metal cutting, Philos. Trans. R. Soc., A, 2001, vol. 359, pp. 663–693.

  32. Wiercigroch, M. and Krivtsov, A.M., Frictional chatter in orthogonal metal cutting, Philos. Trans. R. Soc., A, 2001, vol. 359, pp. 713–738.

  33. Zakovorotny, V.L., Lukyanov, A.D., Gubanova, A.A., and Khristoforova, V.V., Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting, J. Sound Vib., 2016, vol. 368, pp. 174–190.

    Article  Google Scholar 

  34. Voronov, S.A., Ivanov, I.I., and Kiselev, I.A., Investigation of the milling process based on a reduced dynamic model of cutting tool, J. Mach. Manuf. Reliab., 2015, vol. 44, no. 1, pp. 70–78.

    Article  Google Scholar 

  35. Zakovorotny, V., Bifurcations in the dynamic system of the mechanic processing in metal–cutting tools, WSEAS Trans. Appl. Theor. Mech., 2015, vol. 10, pp. 102–116.

    Google Scholar 

  36. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of fluctuations on stability of molding trajectories during turning, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Tekh. Nauki, 2017, no. 2 (194), pp. 52–61.

  37. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of the motion error of the lathe turning elements on the trajectory of the shaping motions, Vestn. Donsk. Gos. Tekh. Univ., 2017, vol. 17, no. 1 (88), pp. 35–46.

  38. Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of spindle wobble in a lathe on the tool’s deformational-displacement trajectory, Russ. Eng. Res., 2018, vol. 38, no. 8, pp. 623–631.

    Article  Google Scholar 

  39. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone, Stanki Instrum., 2018, no. 12, pp. 17–25.

  40. Zakovorotny, V.L. and Gvindjilia, V.E., Influence of kinematic perturbations on shape-generating movement trajectory stability, Procedia Eng., 2017, vol. 206, pp. 157–162.

    Article  Google Scholar 

  41. Zakovorotny, V.L. and Gvindzhiliya, V.E., Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone, Russ. Eng. Res., 2019, vol. 39, no. 5, pp. 423–430.

    Article  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Foundation for Basic Research (grant 19-08-00022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Zakovorotnyi, V. E. Gvindjiliya or V. P. Lapshin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakovorotnyi, V.L., Gvindjiliya, V.E. & Lapshin, V.P. Dynamics of Tool Deformation in the Cutting System. Russ. Engin. Res. 41, 246–251 (2021). https://doi.org/10.3103/S1068798X21030230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X21030230

Keywords:

Navigation