Skip to main content
Log in

Amplitude–Frequency Characteristics of Magnetically Controlled Hydraulic Bearings with Added Mass

  • Published:
Russian Engineering Research Aims and scope

Abstract

The amplitude–frequency characteristic of magnetically controlled hydraulic bearings is considered in the case where a constant magnetic field acts on a magnetorheological fluid in throttle channels at different temperatures. The eigenfrequencies of the hydraulic bearings are determined at different temperatures of the magnetorheological fluid, with different added masses in a magnetorheological transformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Gordeev, B.A., Erofeev, V.I., Sinev, A.V., and Mugin, O.O., Sistemy vibrozashchity s ispol’zovaniem inertsionnosti i dissipatsii reologicheskikh sred (Vibration Protection Systems with Inertia and Dissipation of Rheological Media), Moscow: Fizmatlit, 2004.

  2. Gordeev, B.A., Erofeev, V.I., and Plekhov, A.S., Matematicheskie modeli adaptivnykh vibroizolyatorov mobil’nykh i statsionarnykh ob”ektov (Mathematical Models of Adaptive Vibration Isolators for Mobile and Stationary Objects), Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ., 2017.

  3. Shokhin, A.E., Panovko, G.Ya., Brysin, A.N., and Nikiforov, A.N., Modeling the dynamics of a hydro-bearing with an inertial hydraulic transducer during shock effects, Mashinostr. Inzh. Obraz., 2013, no. 4 (37), pp. 63–69.

  4. Brysin, A.N., Shokhin, A.E., Sinev, A.V., et al., Test methods for vibration protection systems with inertial converters, Probl. Mashinostr. Avtom., 2012, no. 4, pp. 80–83.

  5. Mugin, O.O., Erokhina, T.V., Sinev, A.V., and Stepanova, L.A., Frequency properties of a dynamic damper with inertial transducer, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 4, pp. 331–334.

    Article  Google Scholar 

  6. Belyaev, E.S., Ermolaev, A.I., Titov, E.Yu., and Tumakov, S.F., Tekhnologii sozdaniya i ispol’zovanie magnetoreologicheskikh zhidkostei dlya upravlyaemykh vibroizolyatorov: monografiya (Creation and Use of Magnetorheological Liquids for Creation of Controlled Vibrational Isolators: Monograph), Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ., 2017.

  7. Okhulkov, S.N., Plekhov, A.S., Titov, D.Yu., and Shevyrev, Yu.V., Metody i ustroistva oslableniya vibratsii elektromekhanicheksikh kompleksov: monografiya (Methods and Devices for Reduction of Vibration of Electromechanical Complexes: Monograph), Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ., 2016.

  8. Popov, D.N., Dinamika i regulirovanie gidro- i pnevmosistem (Dynamics and Regulation of Hydraulic and Pneumatic Systems), Moscow: Mashinostroenie, 1976.

  9. Druzhinskii, I.A., Mekhanicheskie tsepi (Mechanical Chains), Leningrad: Mashinostroenie, 1977.

  10. Zarubin, V.S. and Krishchenko, A.P., Matematicheskoe modelirovanie v tekhnike (Mathematical Modeling in Engineering), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2003.

  11. Makarov, I.M. and Menskii, B.M., Lineinye avtomaticheskie sistemy (elementy teorii, metody rascheta i spravochnyi material) (Linear Automatic Systems: Theoretical Elements, Calculation Methods, and Reference Material), Moscow: Mashinostroenie, 1982.

  12. Shcherbakov, V.S., Ruppel’, A.A., and Glushets, V.A., Osnovy modelirovaniya sistem avtomaticheskogo regulirovaniya i elektrotekhnicheskikh sistem v srede Matlab i Simulink (Basic Modeling of Automatic Control and Electrotechnical Systems in Matlab and Simulink), Omsk: Sib. Avtomob.-Dorozhn. Inst., 2003.

  13. Gordeev, B.A., Okhulkov, S.N., Osmekhin, A.N., and Stepanov, K.S., Construction of the mathematical models of magnetically controlled hydrosupports using the method of electromechanical analogies, in Aktual’nye problemy elektroenergetiki (Current Problems in Electrical Engineering), Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ., 2018, pp. 119–128.

  14. Chikurov, N.G., Synthesis of mathematical models of technical systems by the method of electrical analogies, Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2009, vol. 12, no. 2, pp. 156–165.

    Google Scholar 

  15. Kazakov, Yu.B., Morozov, N.A., and Nesterov, S.A., Interrelated physical processes in an electromechanical magnetic fluid damper, Materialy 17-i Mezhdunarodnoi nauchnoi konferentsii po nanodispersnym magnitnym zhidkostyam (Proc. 17th Int. Sci. Conf. on Nanodispersed Magnetic Liquids), Ivanovo: Ivanovsk. Gos. Energ. Univ., 2016, pp. 66–73.

  16. Yavorskii, B.M. and Detlaf, A.A., Spravochnik po fizike (Handbook on Physics), Moscow: Nauka, 1964.

  17. Naigert, K.V. and Rednikov, S.N., Dependence of the internal energy of a single-component hydrocarbon system on the particle size during measuring of the viscosity characteristic in a high-pressure rotary viscometer, Vestn. Perm. Nats. Issled. Politekh. Univ., Aerokosm. Tekh., 2014, no. 36, pp. 143–154.

Download references

Funding

Financial support was provided by the Russian Science Foundation (project 20-19-00372).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. A. Gordeev or S. N. Okhulkov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanyagin, A.V., Gordeev, B.A., Okhulkov, S.N. et al. Amplitude–Frequency Characteristics of Magnetically Controlled Hydraulic Bearings with Added Mass. Russ. Engin. Res. 40, 1003–1012 (2020). https://doi.org/10.3103/S1068798X20120229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20120229

Keywords:

Navigation