Skip to main content
Log in

Thermodynamic Modeling of the Formation of Chromium Carbides in an Applied Metal Layer

  • Published:
Russian Engineering Research Aims and scope

Abstract

The use of chromium carbides to harden surfaced metal that is subject to abrasive wear is considered. With correct hardening of the applied layer, carbide formation extends the working life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Gal’chenko, N.K., Samartsev, V.P., Kolesnikova, K.A., et al., The effect of complex alloying of surfacing materials by titanium-based microdispersed ternary compounds on the structure and properties of coatings, Svarka Diagn., 2016, no. 2, pp. 58–63.

  2. Zhou, Y.F., Qin, G.K., Jiang, P.J., et al., Dry sliding wear behavior of (Cr, Fe)7C3–γ(Cr, Fe) metal matrix composite (MMC) coatings: the influence of high volume fraction (Cr, Fe)7C3 carbide, Tribol. Lett., 2018, vol. 66, p. 108. https://doi.org/10.1007/s11249-018-1053-7

    Article  Google Scholar 

  3. Chichinadze, A.V., Braun, E.D., Bushe, N.A., et al., Osnovy tribologii (trenie, iznos, smazka) (Fundamentals of Tribology (Friction, Wear, and Lubricaiton)), Chichinadze, A.V., Ed., Moscow: Mashinostroenie, 2001.

    Google Scholar 

  4. Chotěborský, R., Hrabě, P., Müller, M., et al., Abrasive wear of high chromium Fe–Cr–C hardfacing alloys, Res. Agric. Eng., 2008, vol. 54, vol. 4, pp. 192–198. doi 10.17221/1/2008-RAE

  5. Welding, brazing and coating solutions, Castolin Eutectic. https://www.castolin.com/ru-RU. Accessed March 16, 2020.

  6. Carboweld welding materials. http://www.carboweld.ru. Accessed March 16, 2020.

  7. Welding apparatus, electrodes, welding wire, equipment and accessories. https://www.lincolnelectric.com/ru-ru/Pages/default.aspx. Accessed March 16, 2020.

  8. Weldnova production catalogue. https://www.вэлднoвa.pф/blank-cilf. Accessed March 16, 2020.

  9. Nazarenko, A.S. and Plomod’yalo, R.L., Separated and complex of alloying of deposited metal by titanium carbide during wear-resistant arc surfacing, Materialy VIII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Tekhnika i tekhnologii mashinostoreniya,” Omsk, 22–25 maya 2019 g. (Proc. VIII Int. Sci.-Tech. Conf. “Equipment and Technology for Machine Engineering,” Omsk, May 22–25, 2019), Omsk, 2019, pp. 9–14.

  10. Makarenko, N.A., Research and development of powder wire providing high resistance of the deposited metal to abrasive wear, Vestn. Priazov. Gos. Tekh. Univ., 2004, no. 14, pp. 1–4.

  11. Sobachkin, A.V., Use of powder SHS materials for for surfacing of wear-resistant coatings of working units of agricultural machines, Materialy VIII Vserossiiskoi nauchno-tekhnicheskoi konferentsii studentov, aspirantov i molodykh uchenykh posvyashchennoi 155-letiyu so dnya rozhdeniya K.E. Tsiolkovskogo “Molodezh’ i nauka” (Proc. VIII All-Russ. Sci.-Tech. Conf. of Students, Post-Graduate Students and Young Scientists Dedicated to the 155th Anniversary of K.E. Tsiolkovskii “Youth and Science”), Krasnoyarsk: Sib. Fed. Univ., 2012. http://conf.sfu-kras.ru/sites/mn2012/section17.html. Accessed March 16, 2020.

  12. Eremin, E.I., Losev, A.S., Borodikhin, S.A., et al., Structure and properties of boron carbide alloyed chromium steel coatings, Din. Sist.,Mekh. Mash., 2017, vol. 5, no. 2, pp. 180–185.

    Google Scholar 

  13. Zhudra, A.P., Tungsten carbide surfacing materials, Avtom. Svarka, 2014, nos. 6–7, pp. 69–74.

  14. Smith, W.H., Solid solubility of carbon in chromium, Trans. AIME, 1957, vol. 9, pp. 47–49.

    Google Scholar 

  15. Lukhtin, Yu.M., Metallovedenie i termicheskaya obrabotka metallov (Metal Science and Thermal Processing of Metals), Moscow: Metallurgiya, 1976.

  16. Chugun: Spravochnoe izdanie (Cast Iron: A Handbook), Sherman, A.D. and Zhukov, A.A., Eds., Moscow: Metallurgiya, 1991.

    Google Scholar 

  17. Ovcharenko, P.G. and Chekmyshev, K.E., Thermodynamic assessment of the possible extraction of chromium carbides from iron-chromium-carbon melts, Khim. Fiz. Mezosk., 2017, vol. 19, no. 1, pp. 89–96.

    Google Scholar 

  18. Leonovich, B.I., Thermodynamic analysis and phase equilibria in the iron–chromium–carbon system, Vestn. Yuzhno-Ural. Gos. Univ., 2009, no. 36, pp. 4–12.

  19. Kim, T.B., Thermodynamic modeling of the formation of borides and carbides of transition metals in vacuum, Vestn. Buryat. Gos. Univ., 2011, no. 3, pp. 189–195.

Download references

FUNDING

Financial support was provided within the framework of state project 075-00148-20-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Kobernik or A. S. Pankratov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, N.P., Kobernik, N.V., Pankratov, A.S. et al. Thermodynamic Modeling of the Formation of Chromium Carbides in an Applied Metal Layer. Russ. Engin. Res. 40, 843–847 (2020). https://doi.org/10.3103/S1068798X20100068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20100068

Keywords:

Navigation