Skip to main content
Log in

3D Printing of Components for the Gas-Discharge Chamber of Electric Rocket Engines

  • Published:
Russian Engineering Research Aims and scope

Abstract

A technology is developed for 3D printing of the large-diameter gas-discharge chambers of electric rocket engines. The material employed is a ceramic composite based on silicon nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antropov, N.N., D’yakonov, G.A., Pokryshkin, A.I., et al., Pulsed plasma engines in spacecraft control systems, Prikl. Fiz., 2002, no. 1, pp. 17–28.

  2. Gorshkov, A.S., Murav’ev, V.A., and Shagaida, A.A., Khollovskie i ionnye plazmennye dvigateli dlya kosmicheskikh apparatov (Hall and Ion Plasma Engines for Spacecrafts), Koroteev, A.S., Ed., Moscow: Mahsinostroenie, 2008, pp. 42–55.

    Google Scholar 

  3. Loeb H. W., Petukhov V.G., Popov G.A., and Mogulkin A.I., A realistic concept of a manned Mars mission with nuclear-electric propulsion, Acta Astronaut., 2015, vol. 116, pp. 299–306.

    Article  Google Scholar 

  4. Tazetdinov, R.G., Prokof’ev, M.V., and Sitnikov, S.A., New ceramic materials with high resistance to ion-plasma erosion, Mezhostraslevoi nauchno-prakticheskaya konferentsiya “Problemy sozdaniya novykh materialov dlya aviatsionno-kosmicheskoi otrasli v XXI veke,” Tezisy dokladov (Interbranch Sci.-Pract. Conf. “Creation of New Materials for Aviation and Space Industry in 21st Century,” Abstracts of Papers), Moscow, 2002.

  5. Semenov, A.A., Spraying of ceramics and ceramic composites by low-energy ion fluxes, Cand. Sci. (Eng.) Dissertation, Moscow, 2015, pp. 96–103.

  6. Sitnikov, S.A., Development of ion-erosion-resistant materials based on silicon nitride for discharge chambers of electric propulsion engines, Cand. Sci. (Eng.) Dissertation, Moscow, 2017, pp. 145–152.

  7. Khartov, S.A., Balashov, V.V., Sitnikov, S.A., et al., Construction materials for high-frequency ion engines, Tr. Mosk. Aviats. Inst., 2013, no. 63. http://trudymai.ru.

  8. Rabinskii, L.N., Sitnikov, S.A., and Khartov, S.A., Creation of working prototypes of ceramic gas-discharge chambers of high-frequency ion engines resistant to ion-plasma sputtering by layer-by-layer modeling, V Mezhdunarodnyi seminar “Dinamicheskoe deformirovanie i kontaktnoe vzaimodeistvie tonkostennykh konstruktsii pri vozdeistvii polei razlichnoi fizicheskoi prirody,” Tezisy dokladov (V Int. Seminar “Dynamic Deformation and Contact Interaction of Thin-Wall Constructions Affected by Various Physical Fields,” Abstracts of Papers), Moscow: TR-Print, 2016, pp. 159–160.

  9. Tonkaya tekhnicheskaya keramika (Fine Engineering Ceramics), Yanagida, H., Ed., Moscow: Metallurgiya, 1986.

    Google Scholar 

  10. Gnesin, G.S., Beskislorodnye keramicheskie materialy (Oxygen-Free Ceramic Materials), Kiev: Tekhnika, 1987.

  11. Novikov, S.V., Strategic analysis of the development of high-technology manufacturing facilities, Russ. Eng. Res., 2018, vol. 38, no. 3, pp. 198–200.

    Article  Google Scholar 

  12. Pogodin, V.A., Sitnikov, S.A., and Solyaev, Yu.O., The study of porous ceramics based on silicon nitride obtained using the technology of 3D printing, Nov. Ogneupory, 2016, no. 11, pp. 33–37.

  13. Poliakov, P.O., Soliayev, Y.O., Sitnikov, S.A., et al., Numerical modeling of residual thermal stresses in Si3N4 based high-porous fibrous ceramics, Int. J. Pure Appl. Math., 2016, vol. 111, no. 2, pp. 319–330.

    Google Scholar 

  14. Rabinskiy, L., Ripetsky, A., Sitnikov, S., Solyaev, Y., et al., Fabrication of porous silicon nitride ceramics using binder jetting technology, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 140, no. 1.

    Article  Google Scholar 

  15. Rabinskiy, L.N. and Tushavina, O.V., Experimental investigation and mathematical modeling of heat protection subjected to high-temperature loading, Period. Tche Quim., 2018, vol. 15, no. 1, pp. 321–323.

    Google Scholar 

  16. Lurie, S.A., Kuznetsova, E.L., Rabinskii, L.N., and Popova, E.I., Refined gradient theory of scale-dependent superthin rods, Mech. Solids, 2015, vol. 50, no. 2, pp. 135–146.

    Article  Google Scholar 

  17. Formalev, V.F., Kuznetsova, E.L., and Rabinskiy, L.N., Localization of thermal disturbances in nonlinear anisotropic media with absorption, High Temp., 2015, vol. 53, no. 4, pp. 548–553.

    Article  Google Scholar 

  18. Novikov, S.V., Russian support for innovation and export growth, Russ. Eng. Res., 2018, vol. 38, no. 4, pp. 305–308.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-29-18083/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Rabinskii.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodin, V.A., Rabinskii, L.N. & Sitnikov, S.A. 3D Printing of Components for the Gas-Discharge Chamber of Electric Rocket Engines. Russ. Engin. Res. 39, 797–799 (2019). https://doi.org/10.3103/S1068798X19090156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X19090156

Keywords:

Navigation