Skip to main content

Electromagnetoelastic Nano- and Microactuators for Mechatronic Systems


A generalized structural–parametric model of an electromagnetoelastic actuator is derived by solving the wave equation. Its transfer function is determined. The influence of geometric and physical parameters and the external load on its static and dynamic characteristics in the control system is established.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Principles of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2005.

  2. 2

    Nikol’skii, A.A., Tochnye dvukhkanal’nye sledyashchie elektroprivody s p’ezokompensatorami (Precise Two-Channel Tracking Electric Actuators with Piezocompensators), Moscow: Energoatomizdat, 1988.

  3. 3

    Dzhagupov, R.G. and Erofeev, A.A., P’ezoelektronnye ustroistva vychislitel’noi tekhniki, sistem upravleniya i kontrolya: Spravochnik (Piezoelectronic Devices for Computer Technology and Control and Monitoring Systems: A Handbook), St. Petersburg: Politekhnika, 1994.

  4. 4

    Uchino, K., Piezoelectric Actuators and Ultrasonic Motors, New York: Springer-Verlag, 1997.

    Google Scholar 

  5. 5

    Panich, A.E., Smotrakov, V.G., Eremkin, V.V., and Vusevker, Yu.A., Prospective use of electrostriction materials, Mikrosist. Tekh., 2002, no. 2, pp. 21–24.

  6. 6

    Akop’yan, V.A., Panich, A.E., Solov’ev, A.N., and Shevtsov, S.N., Physicomechanical problems and applications of piezoelectric actuators, Nano. Mikrosist. Tekhn., 2006, no. 10, pp. 35–40.

  7. 7

    Kazakov, V.K., Nikiforov, V.G., Safronov, A.Ya., and Chernov, V.A., Actuators for optical gates and measurement of their characteristics, Nano. Mikrosist. Tekhn., 2007, no. 10, pp. 52–55.

  8. 8

    Afonin, S.M., Nano- and microscale piezo motors, Russ. Eng. Res., 2012, vol. 32, nos. 7–8, pp. 519–522.

    Article  Google Scholar 

  9. 9

    Yang, Y. and Tang, L., Equivalent circuit modeling of piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., 2009, vol. 20, no. 18, pp. 2223–2235.

    Article  Google Scholar 

  10. 10

    Cady, W.G., Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, New York: McGraw-Hill, 1946.

    Google Scholar 

  11. 11

    Physical Acoustics: Principles and Methods, Vol. 1, Part A: Methods and Devices, Mason, W., Ed., New York: Academic, 1964.

    Google Scholar 

  12. 12

    Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook on Linear Equations in Mathematical Physics), Moscow: Fizmatlit, 2001.

  13. 13

    Afonin, S.M., Structural–parametric model of a piezonanomotor, Vestn. Mashinostr., 2001, no. 5, pp. 29–33.

  14. 14

    Afonin, S.M., Compression and elastic-pliability diagrams of nano-scale piezomotors, Vestn. Mashinostr., 2003, no. 9, pp. 16–18.

  15. 15

    Afonin, S.M., Absolute stability of automatic control systems of nanodrive piezomotors, Vestn. Mashinostr., 2005, no. 1, pp. 24–27.

  16. 16

    Afonin, S.M., Static and dynamic characteristics of a multilayer electromagnetoelastic converter in nano- and microdrives, Russ. Eng. Res., 2009, vol. 29, no. 10, pp. 957–967.

    Article  Google Scholar 

  17. 17

    Afonin, S.M., Electroelasticity problems for multilayer nano-and micromotors, Russ. Eng. Res., 2011, vol. 31, no. 9, pp. 842–847.

    Article  Google Scholar 

  18. 18

    Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin: Springer-Verlag, 2004.

    Google Scholar 

  19. 19

    Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Eds., Valencia, Ca: Am. Sci. Publ., 2004.

    Google Scholar 

  20. 20

    Zhou, S. and Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2014, vol. 61, no. 3, pp. 535–546.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. M. Afonin.

Additional information

Translated by Bernard Gilbert

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.M. Electromagnetoelastic Nano- and Microactuators for Mechatronic Systems. Russ. Engin. Res. 38, 938–944 (2018).

Download citation


  • transfer function
  • structural–parametric model
  • electromagnetoelastic actuator
  • deformation
  • longitudinal piezo effect
  • transverse piezo effect
  • shear piezo effect
  • piezoactuator