Abstract
A generalized structural–parametric model of an electromagnetoelastic actuator is derived by solving the wave equation. Its transfer function is determined. The influence of geometric and physical parameters and the external load on its static and dynamic characteristics in the control system is established.
This is a preview of subscription content, access via your institution.







REFERENCES
Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Principles of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2005.
Nikol’skii, A.A., Tochnye dvukhkanal’nye sledyashchie elektroprivody s p’ezokompensatorami (Precise Two-Channel Tracking Electric Actuators with Piezocompensators), Moscow: Energoatomizdat, 1988.
Dzhagupov, R.G. and Erofeev, A.A., P’ezoelektronnye ustroistva vychislitel’noi tekhniki, sistem upravleniya i kontrolya: Spravochnik (Piezoelectronic Devices for Computer Technology and Control and Monitoring Systems: A Handbook), St. Petersburg: Politekhnika, 1994.
Uchino, K., Piezoelectric Actuators and Ultrasonic Motors, New York: Springer-Verlag, 1997.
Panich, A.E., Smotrakov, V.G., Eremkin, V.V., and Vusevker, Yu.A., Prospective use of electrostriction materials, Mikrosist. Tekh., 2002, no. 2, pp. 21–24.
Akop’yan, V.A., Panich, A.E., Solov’ev, A.N., and Shevtsov, S.N., Physicomechanical problems and applications of piezoelectric actuators, Nano. Mikrosist. Tekhn., 2006, no. 10, pp. 35–40.
Kazakov, V.K., Nikiforov, V.G., Safronov, A.Ya., and Chernov, V.A., Actuators for optical gates and measurement of their characteristics, Nano. Mikrosist. Tekhn., 2007, no. 10, pp. 52–55.
Afonin, S.M., Nano- and microscale piezo motors, Russ. Eng. Res., 2012, vol. 32, nos. 7–8, pp. 519–522.
Yang, Y. and Tang, L., Equivalent circuit modeling of piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., 2009, vol. 20, no. 18, pp. 2223–2235.
Cady, W.G., Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, New York: McGraw-Hill, 1946.
Physical Acoustics: Principles and Methods, Vol. 1, Part A: Methods and Devices, Mason, W., Ed., New York: Academic, 1964.
Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook on Linear Equations in Mathematical Physics), Moscow: Fizmatlit, 2001.
Afonin, S.M., Structural–parametric model of a piezonanomotor, Vestn. Mashinostr., 2001, no. 5, pp. 29–33.
Afonin, S.M., Compression and elastic-pliability diagrams of nano-scale piezomotors, Vestn. Mashinostr., 2003, no. 9, pp. 16–18.
Afonin, S.M., Absolute stability of automatic control systems of nanodrive piezomotors, Vestn. Mashinostr., 2005, no. 1, pp. 24–27.
Afonin, S.M., Static and dynamic characteristics of a multilayer electromagnetoelastic converter in nano- and microdrives, Russ. Eng. Res., 2009, vol. 29, no. 10, pp. 957–967.
Afonin, S.M., Electroelasticity problems for multilayer nano-and micromotors, Russ. Eng. Res., 2011, vol. 31, no. 9, pp. 842–847.
Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin: Springer-Verlag, 2004.
Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Eds., Valencia, Ca: Am. Sci. Publ., 2004.
Zhou, S. and Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2014, vol. 61, no. 3, pp. 535–546.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by Bernard Gilbert
About this article
Cite this article
Afonin, S.M. Electromagnetoelastic Nano- and Microactuators for Mechatronic Systems. Russ. Engin. Res. 38, 938–944 (2018). https://doi.org/10.3103/S1068798X18120328
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068798X18120328
Keywords:
- transfer function
- structural–parametric model
- electromagnetoelastic actuator
- deformation
- longitudinal piezo effect
- transverse piezo effect
- shear piezo effect
- piezoactuator