Skip to main content
Log in

Controlling the State of Machine Tools

  • Published:
Russian Engineering Research Aims and scope

Abstract

Globally, manufacturers make great efforts to maintain the performance of industrial equipment. Developers and researchers are interested in automated approaches to maintaining the performance of equipment, especially at enterprises with high degrees of computerization and comprehensive information systems. In the present work, a new approach is outlined: an autonomous control system for maintaining the condition of metal-cutting machines. This approach is based on prior work in the field and permits maintenance on the basis of autonomous control of the state of machine tools. The structure of a system with the following generalized control functions is presented: decision making; and the issuing of commands on the basis of built-in resources. The formulation of control decisions employs the theory of fuzzy sets and fuzzy logic. By means of the ANFIS fuzzy network system, the autonomy of state control of the machine tool may be assessed. Criticality assessment of the condition of machine tools and their components is important in making decisions as to the setup of systems controlling the condition of equipment at enterprises, with assessment of their efficiency. In the monitoring subsystem, provision is made for assessment of the diagnostic results, prediction, and the generation of control decisions so as to prevent disruptions of machine-tool operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mal’tsev, A.I. and Mal’tsev, A.A., Monitoring tekhnicheskogo sostoyaniya krupnykh mashin: uchebnoe posobie (Monitoring of Technical Status of Large Machines: Manual), Elektrostal: DAMO, 1998.

  2. GOST (State Standard) R ISO 17359–2009: Condition Monitoring and Diagnostics of Machines. General Guidelines on Condition Monitoring and Diagnostics Procedures, Moscow: Standartinform, 2010.

  3. Nikitin, Yu.R. and Abramov, I.V., Development of the diagnostic system of CNC machines, Mekhatron., Avtom. Uprav., 2011, no. 4, pp. 32–35.

  4. Muller, A., Suhner, M.-C., and Iung, B., Proactive maintenance for industrial system operation based on a formalized prognosis process, Reliab. Eng. Syst. Saf., 2008, vol. 93, pp. 234–253.

    Article  Google Scholar 

  5. Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., and Liao, H., Intelligent prognostics tools and e-maintenance, Comp. Ind., 2006, vol. 57, pp. 476–489.

    Article  Google Scholar 

  6. Djurdjanovic, D., Lee, J., and Ni, J., Watchdog agent—an infotronics-based prognostics approach for product performance degradation assessment and prediction, Adv. Eng. Inf., 2001, vol. 7, no. 3, pp. 109–125.

    Google Scholar 

  7. Moore, W.J. and Starr, A.G., An intelligent maintenance system for continuous cost-based prioritization of maintenance activities, Comp. Ind., 2006, vol. 6, pp. 595–606.

    Article  Google Scholar 

  8. Kruglova, T.N. and Glebov, N.A., Diagnostirovanie i prognozirovanie tekhnicheskogo sostoyaniya mekhatronnykh modulei dvizheniya tekhnologicheskogo oborudovaniya. monografiya (Diagnostics and Forecasting of Technical State of Mechatronic Modules of the Motion of Technological Equipment: Monograph), Novocherkassk, 2011.

  9. Wu, X., Li, Y., Lundell, T.D., and Guru, A.K., Integrated prognosis of AC servo motor driven linear actuator using hidden semi-Markov models, Proc. IEEE Int. Electric Machines and Drives Conf., Piscataway, NJ: Inst. Electr. Electron. Eng., 2009, pp. 1408–1413.

  10. Filippetti, F., Franceschini, G., Tassoni, C., and Vas, P., Recent developments of induction motor drives fault diagnosis using AI techniques, IEEE Trans. Ind. Electron., 2000, vol. 47, pp. 994–1004.

    Article  Google Scholar 

  11. Arthur, N. and Penman, J., Induction machine condition monitoring with higher order spectra, IEEE Trans. Ind. Electron., 2000, vol. 47, pp. 1031–1041.

    Article  Google Scholar 

  12. Nejjari, H. and Benbouzid, M., Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach, IEEE Trans. Ind. Appl., 2000, vol. 36, pp. 730–735.

    Article  Google Scholar 

  13. Yang, B., Jeong, S., Oh, Y., and Tan, A., Case-based reasoning system with Petri nets for induction motor fault diagnosis, Expert Syst. Appl., 2004, vol. 27, pp. 301–311.

    Article  Google Scholar 

  14. Lee, J., Wu, F., Zhao, W., and Ghaffari, M., Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications, Mech. Syst. Signal Process., 2014, vol. 42, pp. 314–334.

    Article  Google Scholar 

  15. Swanson, D.C., A general prognostic tracking algorithm for predictive maintenance, Proc. IEEE Aerospace Conf., Piscataway, NJ: Inst. Electr. Electron. Eng., 2001, vol. 6, pp. 62971–62977.

  16. Swanson, D.C., Spencer, J.M., and Arzoumanian, S.H., Prognostic modeling of crack growth in a tensioned steel band, Mech. Syst. Signal Process., 2000, vol. 14, pp. 789–803.

    Article  Google Scholar 

  17. Erl, T., Service-Oriented Architecture: Concepts, Technology, and Design, Upper Saddle River: Prentice Hall, 2005. ISBN 0-13-185858-0

    Google Scholar 

  18. Bangemann, T., Reboul, D., Scymanski, J., et al., PROTEUSAn integration platform for distributed maintenance systems, Comput. Ind., 2006, vol. 57, no. 6, pp. 539–551.

    Article  Google Scholar 

  19. Lebold, M. and Thurston, M., Open standards for condition-based maintenance and prognostic systems, Proc. MARCON 2001: Fifth Annual Maintenance and Reliability Conf., Gatlinburg, 2001.

  20. Karray, M. H., Chebel-Morello, B., Lang, C., and Zerhouni, N., A component based system for S-maintenance, 9th IEEE Int. Conf. on Industrial Informatics, INDIN’11, Piscataway, NJ: Inst. Electr. Electron. Eng., 2011, vol. 7, pp. 1–8

  21. Muller, A., Marquez, C., and Iung, B., On the concept of e-maintenance: review and current research, J. Reliab. Eng. Syst. Saf., 2008, vol. 93, pp. 1165–1187.

    Article  Google Scholar 

  22. A tool for time management, Silovye Mash., 2013, no. 14.

  23. GOST (State Standard) R ISO 13379–2009: Condition Monitoring and Diagnostics of Machines. General Guidelines on Data Interpretation and Diagnostics Techniques, Moscow: Standartinform, 2009.

  24. Zhdanov, A.A., Avtonomnyi iskusstvennyi intellekt (Autonomous Artificial Intelligence), Moscow: BINOM, Laboratoriya Znanii, 2012, 3rd ed.

  25. Tugengol’d, A.K., Voloshin, R.N., and Yushchenko, S.V., E-MIND MACHINE module in intelligent machine monitoring system, Mezhdunar. Nauchno-Issled. Zh., 2015, no. 9-2 (40), pp. 100–102.

  26. Tugengol’d, A.K., Dimitrov, V.P., Izyumov, A.I., and Yusupov, A.R., Monitoring and control of tools in multifunctional machine tools, Russ. Eng. Res., 2017, vol. 37, no. 5, pp. 440–446.

    Article  Google Scholar 

  27. Tugengol’d, A.K. and Voloshin, R.N., Flexible monitoring of Mechatronic machines, Vestn. Donsk. Gos. Tekh. Univ., 2016, no. 4, pp. 51–58.

  28. Tugengol’d, A.K., Dimitrov, V.P., Voloshin, R.N., et al., Monitoring of machine tools, Russ. Eng. Res., 2017, vol. 37, no. 8, pp. 440–446.

    Article  Google Scholar 

  29. Push, V.E., Pigert, R., and Sosonkin, V.L., Avtomaticheskie stanochnye sistemy (Automatic Machine Systems), Moscow: Mashinostroenie, 1982.

  30. Yadchenko, A.V., Solomykin, M.Yu., Tugengol’d, A.K., et al., The structure and algorithm of the diagnostic system of the state of a multioperational machine, Sovrem. Nauchn. Issled. Razrab., 2017, no. 8 (8), pp. 232–237.

  31. Hard- and software for ROBOCUTFANUC machine. http://www.fanuc.eu/ru/ru/robocut-ib/oпции-для-cтaнкoв-robocut. Accessed October 20, 2017.

  32. Tugengol’d, A.K. and Voloshin, R.N., Criteria for analysis of the state of technological machines, 10‑i Mezhdunarodnaya nauchno-prakticheskaya konferentsiya v ramkakh 20-i mezhdunarodnoi agropromyshlennoi vystavki Interagromash-2017 “Sostoyanie i perspektivy razvitiya sel’skokhozyaistvennogo mashinostroeniya” (Tenth Int. Sci.-Pract. Conf. within Twentieth Int. Agroindustrial Exhibition Interagromash-2017 “The State and Prospects of Agroindustrial Machine Engineering), Rostov-on-Don, 2017, pp. 288–292.

  33. GOST (State Standard) R ISO 13379-1–2015: Condition Monitoring and Diagnostics of Machines. Data Interpretation and Diagnostics Techniques. Part 1. General Guidelines, Moscow: Standartinform, 2015.

  34. GOST (State Standard) R ISO 13381-1–2016: Condition Monitoring and Diagnostics of Machines. Machine Condition Prognosis. Part 1. General Guidelines, Moscow: Standartinform, 2016.

  35. ISO 13381-1:2015: Condition Monitoring and Diagnostics of Machines Prognostics—Part 1: General Guidelines (IDT), Geneva: Int. Org. Stand., 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Tugengol’d, V. P. Dimitrov, L. V. Borisova, R. N. Voloshin or M. Yu. Solomykin.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugengol’d, A.K., Dimitrov, V.P., Borisova, L.V. et al. Controlling the State of Machine Tools. Russ. Engin. Res. 38, 1056–1062 (2018). https://doi.org/10.3103/S1068798X18120304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X18120304

Keywords:

Navigation