Skip to main content
Log in

Influence of Spindle Wobble in Turning on the Workpiece’s Surface Topology

  • Published:
Russian Engineering Research Aims and scope

Abstract

The shaping trajectory of the cutting tool relative to the workpiece consists of the trajectories of the machine tool’s working components, trajectories unrelated to control of perturbations (including spindle wobble), and deformational-displacement trajectories of the tool and workpiece relative to the supporting system. In the present work, the perturbation considered is wobble, which depends on the precision and state of the machine tool. Spindle wobble in a lathe leads to the formation of various attractive sets associated with deformational displacement of the tool. The result is to change the shaping trajectory. That affects the geometric topology of the machined surface, which depends not only on the shaping motion but also on independent processes that accompany cutting, such as plastic deformation, thermodynamic phenomena, and dissipative structures formed in the cutting zone. The present work examines how the attractive sets associated with the deformational displacement produced by spindle wobble are related to the surface topology. The contribution of the wobble to the surface topology is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Suslov, A.G., Tekhnologicheskoe obespechenie parametrov sostoyaniya poverkhnostnogo sloya (Technological Maintenance of Surface Layer of the Parts), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  2. Suslov, A.G., Kachestvo poverkhnostnogo sloya detalei mashin (Quality of Surface Layer of Machine Parts), Moscow: Mashinostroenie, 2000.

    Google Scholar 

  3. Tlustý, J., Samobuzené Kmity v Obrábecích Strojích, Prague: Cesk. Akad. Ved., 1954.

  4. Tlustý, J., Polacek, A., Danek, C., and Spacek, J., Selbsterregte Schwingungen an Werkzeugmaschinen, Berlin: VEB Verlag Tech., 1962.

    Google Scholar 

  5. Tlustý, J., Manufacturing Processes and Equipment, Upper Saddle River, NJ: Prentice Hall, 2000.

    Google Scholar 

  6. Tobias, S.A., Machine Tool Vibrations, Blackie, London, 1965.

  7. Kudinov, V.A., Dinamika stankov (Dynamics of Machines), Moscow: Mashinostroenie, 1967.

    Google Scholar 

  8. El’yasberg, M.E., Avtokolebaniya metallorezhushchikh stankov: teoriya i praktika (Auto-Oscillations of Machine Tools: Theory and Practice), St. Petersburg: Osoboe Konstr. Byuro Stankostr., 1993.

    Google Scholar 

  9. Veits, V.L. and Vasil’kov, D.V., Dynamics, modeling, and quality maintenance at the machine treatment of low-rigidity billets, Stanki Instrum., 1999, no. 6, pp. 9–13.

  10. Stepan, G., Delay-differential equation models for machine tool chatter, in Nonlinear Dynamics of Material Processing and Manufacturing, Moon, F.C., Ed., New York: Wiley, 1998, pp. 165–192.

    Google Scholar 

  11. Stepan, G., Insperge, T., and Szalai, R., Delay-parametric excitation, and the nonlinear dynamics of cutting processes, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2005, vol. 15, no. 9, pp. 2783–2798.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zakovorotny, V.L., Lukyanov, A.D., Gubanova, A.A., and Khristoforova, V.V., Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting, J. Sound Vib., 2016, vol. 368, pp. 174–190.

    Article  Google Scholar 

  13. Zakovorotny, V.L., Gubanova, A.A., and Lukyanov, A.D., Stability of shaping trajectories in milling: synergetic concepts, Russ. Eng. Res., 2016, vol. 36, no. 11, pp. 956–964.

    Article  Google Scholar 

  14. Zakovorotnyi, V.L., Gubanova, A.A., and Luk’yanov, A.D., Parametric self-excitation of a dynamic end-milling machine, Russ. Eng. Res., 2016, vol. 36, no. 12, pp. 1033–1039.

    Article  Google Scholar 

  15. Zakovorotny, V.L., Gubanova, A.A., and Lukyanov, A.D., Attractive manifolds in end milling, Russ. Eng. Res., 2016, vol. 36, no. 2, pp. 158–163.

    Article  Google Scholar 

  16. Zakovorotnyi, V.L. and Bykador, V.S., Cutting-system dynamics, Russ. Eng. Res., 2016, vol. 36, no. 7, pp. 591–598.

    Article  Google Scholar 

  17. Zakovorotny, V., Bifurcations in the dynamic system of the mechanic processing in metal-cutting tools, WSEAS Trans. Appl. Theor. Mech., 2015, vol. 10, pp. 102–116.

    Google Scholar 

  18. Zakovorotnyi, V.L., Fam, D.T., and Bykador, V.S., Self-organization and bifurcation of dynamic system for metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 26–39.

    Google Scholar 

  19. Zakovorotnyi, V.L., Fam, D.T., and Bykador, V.S., Influence of flexural deformations of tool on self-organization and bifurcation of dynamic system of metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 40–52.

    Google Scholar 

  20. Zakovorotnyi, V.L. and Fam, T.Kh., Parametric selfexcitation of dynamics system of cutting, Vestn. Donsk. Gos. Tekh. Univ., 2013, nos. 5–6, pp. 97–103.

  21. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of kinematic perturbations along longitudinal feed on the trajectory of the shaping motions, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Tekh. Nauki, 2016, no. 4 (192), pp. 67–76.

  22. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of the motion error of the lathe turning elements on the trajectory of the shaping motions, Vestn. Donsk. Gos. Tekh. Univ., 2017, vol. 17, no. 1 (88), pp. 35–46.

  23. Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of fluctuations on stability of shaping trajectories during turning, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Tekh. Nauki, 2017, no. 2, pp. 52–61.

  24. Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of spindle wobble in a lathe on the tool’s deformational-displacement trajectory, Russ. Eng. Res., 2018, vol. 38, no. 8, pp. 623–631.

    Article  Google Scholar 

  25. Khusu, A.P., Vitenberg, Yu.R., and Pal’mov, V.A., Sherokhovatost’ poverkhnostei. Teoretiko-veroyatnostnyi podkhod (Roughness of Surfaces: Theoretical and Probabilistic Approach), Moscow: Nauka, 1975.

    Google Scholar 

  26. Dunin-Barkovskii, I.V. and Kartashova, A.N., Izmerenie i analiz sherokhovatosti, volnistosti i nekruglosti poverkhnosti (Measurement and Analysis of Roughness, Ripple, and Nonroundness of the Surface), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  27. Zakovorotnyi, V.L. and Flek, M.B., Dinamika protsessa rezaniya. Sinergeticheskii podkhod (Dynamics of Cutting Process: Synergetic Approach), Rostov-on-Don: Terra, 2006, pp. 396–399.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Zakovorotny or V. E. Gvindzhiliya.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakovorotny, V.L., Gvindzhiliya, V.E. Influence of Spindle Wobble in Turning on the Workpiece’s Surface Topology. Russ. Engin. Res. 38, 818–823 (2018). https://doi.org/10.3103/S1068798X18100192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X18100192

Keywords:

Navigation