Skip to main content
Log in

Dynamic Influence of Spindle Wobble in a Lathe on the Workpiece Geometry

  • Published:
Russian Engineering Research Aims and scope

Abstract

The influence of spindle wobble in a lathe on the geometry of the machined surface is not direct. The intermediate stages involve conversion of the wobble to forces and elastic deformations. Together with the elastic deformation, wobble modifies the shaping trajectories, which are mainly responsible for the geometry of the final product. Wobble induces periodic variation in the parameters of the dynamic system. It leads not only to parametric self-excitation but also, in a nonlinear dynamic system, to the formation of various attractive deformational-displacement sets. The present work is devoted to mathematical modeling of the influence of wobble on the workpiece geometry. Cases in which various types of attractive sets are formed in the system (such as limit cycles, invariant tori, and chaotic attractors) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proektirovanie metallorezhushchikh stankov i stanochnykh sistem. Spravochnik. Tom 1. Proektirovanie stankov (Engineering of Metal Cutting Machines and Accessories: Handbook, Vol. 1: Design of Machines), Pronikov, A.S., Ed., Moscow: Mashinostroenie, 1994.

  2. Reshetov, D.N. and Portman, V.T., Tochnost’ metallorezhushchikh stankov (Precision of Metal Cutting Machines), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  3. Push, A.V., Shpindel’nye uzly. Kachestvo i nadezhnost’ (Spindle Units: Quality and Reliability), Moscow: Mashinostroenie, 1992.

    Google Scholar 

  4. Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of kinematic perturbations along longitudinal feed on the trajectory of the molding movements, Izv. Vyssh. Uchebn. Zaved., Sev.–Kavk. Reg., Tekh. Nauki, 2016, no. 4 (192), pp. 67–76.

    Google Scholar 

  5. Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of the motion error of the turning elements of the lathe on the trajectory of the molding movements, Vestn. Donsk. Gos. Tekh. Univ., 2017, vol. 17, no. 1 (88), pp. 35–46.

    Google Scholar 

  6. Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of fluctuations on stability of molding trajectories during turning, Izv. Vyssh. Uchebn. Zaved., Sev.–Kavk. Reg., Tekh. Nauki, 2017, no. 2, pp. 52–61.

    Google Scholar 

  7. Tlustý, J., Samobuzené Kmity v Obrábecích Strojích, Praha: Cesk. Akad. Ved., 1954.

    Google Scholar 

  8. Tlustý, J., Polacek, A., Danek, C., and Spacek, J., Selbsterregte Schwingungen an Werkzeugmaschinen, Berlin: VEB Verlag Technik, 1962.

    Google Scholar 

  9. Tlusty, J., Manufacturing Processes and Equipment, Upper Saddle River, NJ: Prentice Hall, 2000.

    Google Scholar 

  10. Tobias, S.A., Machine Tool Vibrations, London: Blackie, 1965.

    Google Scholar 

  11. Kudinov, V.A., Dinamika stankov (Dynamics of Machines), Moscow: Mashinostroenie, 1967.

    Google Scholar 

  12. El’yasberg, M.E., Avtokolebaniya metallorezhushchikh stankov: teoriya i praktika (Auto–Oscillations of Machine Tools: Theory and Practice), St. Petersburg: Osoboe Konstruktorskoe Byuro Stankostroeniya, 1993.

    Google Scholar 

  13. Veits, V.L. and Vastil’kov, D.V., Dynamics, modeling, and quality maintenance at the machine treatment of small hard billets, Stanki Instrum., 1999, no. 6, pp. 9–13.

    Google Scholar 

  14. Stepan, G., Delay–differential equation models for machine tool chatter, in Nonlinear Dynamics of Material Processing and Manufacturing, Moon, F.C., Ed., New York: Wiley, 1998, pp. 165–192.

    Google Scholar 

  15. Stepan, G., Insperge, T., and Szalai, R., Delay, parametric excitation, and the nonlinear dynamics of cutting processes, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2005, vol. 15, no. 9, pp. 2783–2798.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zakovorotny, V.L., Lukyanov, A.D., Gubanova, A.A., and Khristoforova, V.V., Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting, J. Sound Vib., 2016, vol. 368, pp. 174–190.

    Article  Google Scholar 

  17. Zakovorotny, V.L., Gubanova, A.A., and Lukyanov, A.D., Stability of shaping trajectories in milling: synergetic concepts, Russ. Eng. Res., 2016, vol. 36, no. 11, pp. 956–964.

    Article  Google Scholar 

  18. Zakovorotny, V.L. and Bykador, V.S., Cutting–system dynamics, Russ. Eng. Res., 2016, vol. 36, no. 7, pp. 591–598.

    Article  Google Scholar 

  19. Zakovorotny, V., Bifurcations in the dynamic system of the mechanic processing in metal–cutting tools, WSEAS Trans. Appl. Theor. Mech., 2015, vol. 10, pp. 102–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Zakovorotny.

Additional information

Original Russian Text © V.L. Zakovorotny, V.E. Gvindzhiliya, 2018, published in STIN, 2018, No. 3, pp. 23–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakovorotny, V.L., Gvindzhiliya, V.E. Dynamic Influence of Spindle Wobble in a Lathe on the Workpiece Geometry. Russ. Engin. Res. 38, 723–725 (2018). https://doi.org/10.3103/S1068798X18090307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X18090307

Keywords

Navigation