Advertisement

Russian Engineering Research

, Volume 37, Issue 9, pp 784–788 | Cite as

Self-balancing high-speed mill

  • R. AlievEmail author
  • R. Guseinov
Article
  • 20 Downloads

Abstract

A long milling tool with a hollow shank is considered. A special chamber in the shank accommodates the compensation material. This design ensures that the tool is self-balancing. That reduces its vibrational amplitude and increases the productivity in high-speed machining.

Keywords

high-speed milling tool dynamics self-balancing self-centering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev, R.R., Khentshel’, B., and Dits, V., The precision of technological equipment at high-speed milling, Vestn. Mashinostr., 2000, no. 2, pp. 27–29.Google Scholar
  2. 2.
    Abele, E., Tian, J., and Turan, E., Grenzdrehzahl lang auskragender Werkzeugsysteme—Einfluss der Werkzeug-Spannfutter-Kombination auf die erste biegekritische Eigenfrequenz, Werkstattstechnik, 2014, nos. 1–2, pp. 60–65.Google Scholar
  3. 3.
    Huerkamp, W., Einsatzgrenzen lang kragender rotierender Werkzeuge unter besonderen Aspekten der Prozess-und Arbeitssicherheit, Dissertation, Aachen: Shaker Verlag, 2001.Google Scholar
  4. 4.
    Schulz, H., Wurz, T., and Huerkamp, W., Auswuchtan-Forderungen an Schnelldrehende Werkzeugsysteme: FKM-Richtlinie, Frankfurt: Verlag VDMA, 1999.Google Scholar
  5. 5.
    Kellenberger, W., Elastisches Wuchten, Berlin: Springer-Verlag, 1987.CrossRefGoogle Scholar
  6. 6.
    Kel’zon, A.S., Zhuravlev, Yu.N., and Yanvarev, N.V., Raschet i konstruirovanie rotornykh mashin (Calculation and Engineering of Rotor Machines), Leningrad: Mashinostroenie, 1977.Google Scholar
  7. 7.
    ELCO HSC-HPC-Tools. Produktkatalog, Version E607, Lich: Spanabhebende Prazisionswerkzeuge, 2013.Google Scholar
  8. 8.
    Young, K.A., Stern, E.J., Talley, T.L., and Hancock, R.B., US Patent 20080298913A1, 2008.Google Scholar
  9. 9.
    Alijew, R., Gantner, D., and Wagner, R., DE Patent 10247715 B4, 2004.Google Scholar
  10. 10.
    Ronde, U., Untersuchung von Systemen zum Spannen von Zylinderschaftwerkzeugen unter besonderer Berucksichtigung ihrer Eignung fur die Hochgeschwindigkeitsbearbeitung, Dissertation, Munich: Carl Hanser Verlag, 1994.Google Scholar
  11. 11.
    Huseynov, R., Entwicklung von Werkzeugschaften fur einen Betrieb im tiberkritischen Drehzahlbereich, Dissertation, Aachen: Shaker Verlag, 2015.Google Scholar
  12. 12.
    Hijink, J.A.Wo. and van der Wolf, A.C.H., Measurement of dynamic behavior of modular milling tools, Ann. CIRP, 1992, vol. 41, no. 1, pp. 113–116.CrossRefGoogle Scholar
  13. 13.
    Levit, M.E., Agafonov, Yu.A., Vaingortin, L.D., et al., Spravochnik po balansirovke (Handbook on Balancing), Levit, M.E., Ed., Moscow: Mashinostroenie, 1992.Google Scholar
  14. 14.
    US Patent 331450, 1885.Google Scholar
  15. 15.
    Baranov, E.V., Improvement of accuracy of spindle rotation of metal machines using automatic balancing devices, Cand. Sci. (Tech.) Dissertation, Komsomolskon-Amur: Komsomolsk-on-Amur State Tech. Univ., 2006.Google Scholar
  16. 16.
    Pashkov, E.N., Dynamics of rotor systems with liquid automatic balancing devices, Cand. Sci. (Tech.) Dissertation, Tomsk: Natl. Res. Tomsk Univ., 2010.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.ACTechFreiburgGermany
  2. 2.Freiburg University of Mining and TechnologyFreiburgGermany

Personalised recommendations