Skip to main content
Log in

Predicting the fatigue strength of structural elements

  • Published:
Russian Engineering Research Aims and scope

Abstract

The development of models relating the fatigue strength of materials to their static strength and plasticity is considered. Statistical strength theories were developed to describe the results of fatigue tests and to predict the strength of machine components with variable loads. Experiments show that the strength of materials depends significantly on structural defects, and the limiting stress is a statistical quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agamirov, L.V., Development of statistical evaluation of the fatigue characteristics of materials and indicators of reliability of structural elements of aviation equipment, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow: Moscow Aviat. Inst., 1994.

    Google Scholar 

  2. Stepnov, M.N., Chernyshev, S.L., Kovalev, I.E., and Zinin, A.V., Kharakteristika soprotivleniya ustalosti. Raschetnye metody otsenki (Characteristics of Fatigue Resistance: Estimation Methods), Moscow: Tekhnol. Mashinostr., 2010.

    Google Scholar 

  3. Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.

    Google Scholar 

  4. Afanas’ev, N.N., Statistical theory of fatigue resistance of metals, Zh. Tekh. Fiz., 1940, vol. 10, no. 19, pp. 1553–1568.

    Google Scholar 

  5. Afanas’ev, N.N., Statisticheskaya teoriya ustalostnoi prochnosti metallov (Statistical Theory of Fatigue Strength of Metals), Kiev: Akad. Nauk UkrSSR, 1953.

    Google Scholar 

  6. Volkov, S.D., Statisticheskaya teoriya prochnosti (Statistical Theory of Strength), Moscow: Mashgiz, 1960.

    Google Scholar 

  7. Volkov, S.D., The theory of macrocraks: Part 1. The simplest models, Probl. Prochn., 1981, no. 2, pp. 44–48.

    Google Scholar 

  8. Volkov, S.D., Dubrovina, G.I., and Sokovnin, Yu.P., Stability of material resistance in fracture mechanics, Probl. Prochn., 1978, no. 6, pp. 65–69.

    Google Scholar 

  9. Konovalov, L.V., Engineering taking for account fatigue as required condition for creation of efficient mechanical systems, Vestn. Mashinostr., 1993, no. 3, pp. 3–11.

    Google Scholar 

  10. Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.

    Google Scholar 

  11. Selikhov, A.F. and Chizhov, V.M., Veroyatnostnye metody v raschetakh prochnosti samoleta (Probabilistic Calculations of an Aircraft Strength), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  12. Serensen, S.V., Fatigue of materials and construction elements, in Izbrannye trudy (Selected Research Works), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  13. Stepnov, M.N., Statisticheskie metody obrabotki rezul’tatov mekhanicheskikh ispytanii: spravochnik (Statistical Analysis of the Results of Mechanical Tests: Handbook), Moscow: Mashinostroenie, 1985.

    Google Scholar 

  14. Surkov, A.I., Probabilistic evaluation of strength at variable loads along the median endurance limits of different-size samples, Probl. Prochn., 1982, no. 12, pp. 42–50.

    Google Scholar 

  15. Basyuk, S.T., Evteev, F.I., and Kovalev, S.I., Expert system for the engineering and manufacture of aircraft wheels, Vopr. Aviats. Nauki Tekh., Ser. Tekhnol. Legkikh Splavov, 1987, no. 11, pp. 58–61.

    Google Scholar 

  16. Basyuk, S.T., Ob”emnaya shtampovka zagotovok iz legkikh splavov na gidravlicheskikh pressakh (Large Pressing of Light-Alloy Billets on Hydraulic Presses), Moscow: Sport i Kul’tura–2000, 2011.

    Google Scholar 

  17. Basyuk, S.T., Intensifikatsiya deformatsii sdviga pri izgotovlenii polufabrikatov (Intensive Shift Deformation in Production of Semi-Finished Products), Moscow: Sport i Kul’tura–2000, 2010.

    Google Scholar 

  18. Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ (Deformation Criteria of Destruction and Calculation of Construction Elements for Strength), Moscow: Mashinostroenie, 1981.

    Google Scholar 

  19. Lisin, A.N., Evaluation of the characteristics of fatigue resistance and the survivability of vehicle wheels, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow: Russ. State Technol. Univ., 2012.

    Google Scholar 

  20. Mozalev, V.V. and Lisin, A.N., The application of statistical strength theories in the function analysis of distribution curve of fatigue, Aviakosm. Tekh. Tekhnol., 2014, no. 4, pp. 41–45.

    Google Scholar 

  21. Bogdanoff, J.L. and Kozin, F., Probabilistic Models of Cumulative Damage, New York: Wiley, 1985.

    MATH  Google Scholar 

  22. Khazanov, I.I., Agafonov, Yu.A., and Mozalev, V.V., Optimization of routine tests during operation of aviation wheels by technical state, Tr. Gos. Nauchno-Issled. Inst. Grazhd. Aviats., 1980, no. 183, pp. 17–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Nabokov.

Additional information

Original Russian Text © A.N. Lisin, I.I. Nabokov, V.V. Mozalev, 2017, published in Vestnik Mashinostroeniya, 2017, No. 2, pp. 46–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisin, A.N., Nabokov, I.I. & Mozalev, V.V. Predicting the fatigue strength of structural elements. Russ. Engin. Res. 37, 388–392 (2017). https://doi.org/10.3103/S1068798X17050161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X17050161

Keywords

Navigation