Skip to main content
Log in

Two-sided laser shock processing

  • Published:
Russian Engineering Research Aims and scope

Abstract

The principles of two-sided laser shock processing (LSP) are considered. The differences between two-sided and one-sided laser shock processing are noted. For the example of a thin VT-6 titanium-alloy plate, finite-element modeling is used to investigate the residual stress field when using two-sided LSP. The distribution of surface microhardness is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birger, I.A., Ostatochenye napryazheniya (Residual Stresses), Moscow: Gos. Nauchno-Tekh. Izd. Mashinostr. Lit., 1963.

    Google Scholar 

  2. Peyre, P., Scherpereel, X., Berthe, L., et al., Current trends in laser shock processing, Surf. Eng., 1998, vol. 14, pp. 377–380.

    Article  Google Scholar 

  3. Luo, K.Y., Liu, B., Wu, L.J., et al., Tensile properties, residual stress distribution and grain arrangement as a function of sheet thickness of Mg–Al–Mn alloy subjected to two-sided and simultaneous LSP impacts, Appl. Surf. Sci., 2016, vol. 369, pp. 366–376.

    Article  Google Scholar 

  4. Zhang, X.Q., Li, H., Yu, X.L., et al., Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate, Mater. Des., 2015, vol. 65, pp. 425–431.

    Article  Google Scholar 

  5. Perminov, M.D., Solov’ev, V.O., Sakhvadze, G.J., et al., Otchet o Nauchno-issledovatel’skoi rabote (zaklyuchitel’nyi) no. 01201060703 “Vibratsionnye, vibroakusticheskie protsessy i tekhnologii, vklyuchaya protsessy upravleniya i informatizatsii v sistemakh “chelovekmashina- sreda”” (Final Report on Scientific Research Work No. 01201060703 “Vibration, Vibroacoustic Processes and Technologies Including control Processes and Informatization in the “Man-Machine-Environment” Systems”), 2012, parts 1–3.

    Google Scholar 

  6. Irizalp, S.G., Saklakoglu, N., Akman, E., et al., Pulsed Nd:YAG laser shock processing effects on mechanical properties, Opt. Laser Technol., 2014, vol. 56, pp. 273–277.

    Article  Google Scholar 

  7. Ocana, J.L., Morales, M., Porro, J.A., et al., Induction of thermo-mechanical residual stresses in metallic materials by laser shock processing, in Encyclopedia of Thermal Stresses, New York: Springer-Verlag, 2014, pp. 2427–2444.

    Chapter  Google Scholar 

  8. Ocana, J.L., Porro, J.A., Morales, M., et al., Laser shock processing: an emerging technique for the enhancement of surface properties and fatigue life of high-strength metals, Int. J. Microstruct. Mater. Prop., 2013, vol. 8, nos. 1–2, pp. 38–52.

    Google Scholar 

  9. Zel’dovich, Yu.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of the Shock Waves and High Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008.

    Google Scholar 

  10. Hu, Y. and Yao, Z., Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell, Int. J. Mach. Tools Manuf., 2008, vol. 48, pp. 152–162.

    Article  Google Scholar 

  11. Grigor’yants, A.G., Shiganov, I.N., and Misyurov, A.I., Tekhnologicheskie protsessy lazernoi obrabotki (Technological Processes of Laser Treatment), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2008.

    Google Scholar 

  12. Johnson, G.R. and Cook, W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. 7-th Int. Sym. on Ballistics, Hague, 1983, pp. 541–547.

    Google Scholar 

  13. Sakhvadze, G.J. Laser shock processing of materials to produce nanostructures, Probl. Mech., 2014, no. 2 (55), special issue, pp. 68–73.

    Google Scholar 

  14. Stolyarov, V.V., Sakhvadze, G.J., and Baranov, Yu.V., Pulse processing technologies for obtaining of nanomaterials, Konstr. Kompoz. Mater., 2007, no. 3, pp. 13–20.

    Google Scholar 

  15. Sakhvadze, G.J. and Gavrilina, L.V., Laser shock wave treatment of materials at the single and multiple pulse exposures, Probl. Mashinostr. Nadezhn. Mash., 2015, no. 6, pp. 75–80.

    Google Scholar 

  16. Sakhvadze, G.J., Gavrilina, L.V., and Kikvidze, O.G., Influence of overlapping laser spots on the residual stress in laser shock wave treatment of materials, Probl. Mashinostr. Nadezhn. Mash., 2016, no. 3, pp. 77–84.

    Google Scholar 

  17. Carlsson, S. and Larsson, P.L., On the determination of residual stress and strain fields by sharp indentation testing. Part 1: theoretical and numerical analysis, Acta Mater., 2001, vol. 49, pp. 2179–2191.

    Article  Google Scholar 

  18. Sakhvadze, G.J., Bulekbaeva, G.Zh., and Kikvidze, O.G., Quality analysis of surface layers hardened by laser shock wave technology at the different degrees of overlapping laser spots, Probl. Mashinostr. Avtom., 2016, no. 2, pp. 132–141.

    Google Scholar 

  19. Moskvitin, G.V., Birger, E.M., and Polyakov, A.N., Laser hardening to reduce metal fatigue, Russ. Eng. Res., 2012, vol. 32, no. 7, pp. 546–549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zh. Sakhvadze.

Additional information

Original Russian Text © G.Zh. Sakhvadze, M.S. Pugachev, O.G. Kikvidze, 2016, published in Vestnik Mashinostroeniya, 2016, No. 10, pp. 71–76.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhvadze, G.Z., Pugachev, M.S. & Kikvidze, O.G. Two-sided laser shock processing. Russ. Engin. Res. 37, 40–45 (2017). https://doi.org/10.3103/S1068798X17010191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X17010191

Keywords

Navigation