Skip to main content
Log in

Stability of shaping trajectories in milling: Synergetic concepts

  • Published:
Russian Engineering Research Aims and scope

Abstract

The use of synergetic concepts in studying the steady shaping trajectories of the tool relative to the workpiece in end milling is discussed, with allowance for elastic displacements and their stability. A two-level hierarchy of dynamic equations is employed. At the first level, steady trajectories are considered. At the second, their stability is analyzed on the basis of variational equations for these trajectories. The case in which the pulsed reaction of the system is an order of magnitude less than one period of the displacement cycle is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prigogine, I. and Stengers, I., Order Out of Chaos, Ann Arbor, MI: Univ. of Michigan Press, 1984.

    Google Scholar 

  2. Prigogine, I. and Stengers, I., Order Out of Chaos: Man’s New Dialogue with Nature, New York: Bantam Books, 1984.

    Google Scholar 

  3. Haken, H., Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, New York: Springer-Verlag, 1993.

    MATH  Google Scholar 

  4. Haken, H., Erfolgsgeheimnisse der Natur, Synergetik: Die Lehre vom Zusammenwirken, Stuttgart: Deutsche Verlags-Anstalt, 1981.

    Google Scholar 

  5. Kolesnikov, A.A., Sinergeticheskaya teoriya upravleniya (Synergetic Theory of Control), Moscow: Energoatomizdat, 1994.

  6. Sinergetika i problemy teorii upravleniya (Synergetic and Problems of Control Theory), Kolesnikov, A.A., Ed., Moscow: Fizmatlit, 2004.

  7. Zakovorotny, V.L. and Flek, M.B., Dinamika protsessa rezaniya. Sinergeticheskii podkhod (Dynamics of Cutting Process: Synergetic Approach), Rostov-on-Don: Terra, 2006.

    Google Scholar 

  8. Zakovorotny, V.L., Lukyanov, A.D., Nguen, D.A., and Fam, D.T., Sinergeticheskii sistemnyi sintez upravlyaemoi dinamiki metallorezhushchikh stankov s uchetom evolyutsii svyazei (Synergetic System Synthesis of Controlled Dynamics of Metal Cutting Machines, Taking into Account the Evolution of Relations), Rostov-on-Don: Donsk. Gos. Tekh. Univ., 2008.

    Google Scholar 

  9. Zakovorotny, V.L. and Lukyanov, A.D., The problems of control of the evolution of the dynamic system interacting with the medium, Int. J. Mech. Eng. Autom., 2014, vol. 1, no. 5, pp. 271–285.

    Google Scholar 

  10. Tlustý, J., Samobuzené Kmity v Obrábecích Strojích, Praha: Cesk. Akad. Ved., 1954.

    Google Scholar 

  11. Tlustý, J., Polacek, A., Danek, C., and Spacek, J., Selbsterregte Schwingungen an Werkzeugmaschinen, Berlin: VEB Verlag Technik, 1962.

    Google Scholar 

  12. Tobias, S.A., Machine Tool Vibrations, London: Blackie, 1965.

    Google Scholar 

  13. Kudinov, V.A., Dinamika stankov (Dynamics of Machines), Moscow: Mashinostroenie, 1967.

    Google Scholar 

  14. El’yasberg, M.E., Avtokolebaniya metallorezhushchikh stankov: teoriya i praktika (Auto-Oscillations of Machine Tools: Theory and Practice), St. Petersburg: Osoboe Konstr. Byuro Stankostr., 1993.

    Google Scholar 

  15. Veits, V.L. and Vastil’kov, D.V., Dynamics, modeling, and quality maintenance at the machine treatment of small hard billets, Stanki Instrum., 1999, no. 6, pp. 9–13.

    Google Scholar 

  16. Zakovorotny, V.L., Fam D.T., and Nguen S.T., Mathematical modeling and parametric identification of dynamic properties of the tool and billet subsystem, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Tekh. Nauki, 2011, no. 2, pp. 38–46.

    Google Scholar 

  17. Sokolovskii, A.P., Vibratsii pri rabote na metallorezhushchikh stankakh. Issledovanie kolebanii pri rezanii metallov (Vibration at Working on Metal Cutting Machines: Analysis of Vibrations at Metal Cutting), Moscow: Mashgiz, 1958, pp. 15–18.

    Google Scholar 

  18. Murashkin, L.S. and Murashkin, S.L., Prikladnaya nelineinaya mekhanika stankov (Applied Nonlinear Mechanics of Machines), Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  19. Zakovorotny, V.L., Bifurcations in the dynamic system of the mechanic processing in metal-cutting tools, J. Trans. Appl. Theor. Mech., 2015, vol. 10, pp. 102–116.

    Google Scholar 

  20. Zakovorotny, V.L., Fam, D.T., and Bykador, V.S., Self-organization and bifurcation of dynamic system for metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 26–40.

    Google Scholar 

  21. Zakovorotny, V.L., Fam, D.T., and Bykador, V.S., Influence of flexural deformations of tool on self-organization and bifurcation of dynamic system of metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 40–53.

    Google Scholar 

  22. Stepan, G., Delay-differential equation models for machine tool chatter, in Nonlinear Dynamics of Material Processing and Manufacturing, Moon, F.C., Ed., New York: Wiley, 1998, pp. 165–192.

    Google Scholar 

  23. Stepan, G., Insperge, T., and Szalai, R., Delay,parametric excitation,and the nonlinear dynamics of cutting processes, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2005, vol. 15, no. 9, pp. 2783–2798.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tobias, S.A. and Fishwick, W., Theory of regenerative machine tool chatter, Engineer, 1958, vol. 205, pp. 199–203.

    Google Scholar 

  25. Merritt, H.E., Theory of self-excited machine tool chatter, ASME J. Eng. Ind., 1965, vol. 205, no. 11, pp. 447–454.

    Article  Google Scholar 

  26. Sridhar, R., Hohn, R.E., and Long, G.W., A stability algorithm for the general milling process: Contribution to machine tool chatter research-7, ASME J. Eng. Ind., 1968, vol. 90, no. 2, pp. 330–334.

    Article  Google Scholar 

  27. Altintas, Y. and Budak, E., Analytical prediction of stability lobes in milling, Ann. CIRP, 1995, vol. 44, no. 1, pp. 357–362.

    Article  Google Scholar 

  28. Tlusty, J. and Ismail, F., Special aspects of chatter in milling, ASME J. Vibrat., Stress, Reliab. Des., 1983, vol. 105, no. 1, pp. 24–32.

    Article  Google Scholar 

  29. Minis, I. and Yanushevsky, T., A new theoretical approach for the prediction of machine tool chatter in milling, Trans. ASME J. Eng. Ind., 1993, vol. 115, no. 2, pp. 1–8.

    Article  Google Scholar 

  30. Insperger, T. and Stepan, G., Stability of the milling process, Period. Polytech.-Mech. Eng., 2000, vol. 44, no. 1, pp. 47–57.

    Google Scholar 

  31. Budak, E. and Altintas, Y., Analytical prediction of chatter stability in milling. Part I: General formulation, ASME J. Dyn. Syst., Meas., Control, 1998, vol. 120, no. 6 (1), pp. 22–30.

    Article  Google Scholar 

  32. Budak, E. and Altintas, Y., Analytical prediction of chatter stability conditions for multi-degree of systems in milling. Part II: Applications, ASME J. Dyn. Syst., Meas., Control, 1998, vol. 120, no. 6 (1), pp. 31–36.

    Article  Google Scholar 

  33. Merdol, D. and Altintas, Y., Multi-frequency solution of chatter stability for low immersion milling, ASME J. Manuf. Sci. Eng., 2004, vol. 126, no. 3, pp. 459–466.

    Article  Google Scholar 

  34. Insperger, T., Mann, B., Stepan, G., and Bayly, P.V., Stability of up-milling and down-milling. Part 1: Alternative analytical methods, Int. J. Mach. Tools Manuf., 2003, vol. 43, no. 1, pp. 25–34.

    Article  Google Scholar 

  35. Kline, W.A., Devor, R.E., and Shareef, I.A., The prediction of surface accuracy in end milling, ASME J. Eng. Ind., 1982, vol. 104, no. 5, pp. 272–278.

    Article  Google Scholar 

  36. Elbestawi, M.A. and Sagherian, R., Dynamic modeling for the prediction of surface errors in milling of thin-walled sections, Theor. Comp. Fluid Dyn., 1991, vol. 25, no. 2, pp. 215–228.

    Google Scholar 

  37. Campomanes, M.L. and Altintas, Y., An improved time domain simulation for dynamic milling at small radial immersions, Trans. ASME. J. Manuf. Sci. Eng., 2003, vol. 125, no. 3, pp. 416–425.

    Article  Google Scholar 

  38. Paris, H., Peigne, G., and Mayer, R., Surface shape prediction in high-speed milling, Int. J. Mach. Tools Manuf., 2004, vol. 44, no. 15, pp. 1567–1576.

    Article  Google Scholar 

  39. Altintas, Y. and Lee, P., A general mechanics and dynamics model for helical end mills, Ann. CIRP, 1996, vol. 45, no. 1, pp. 59–64.

    Article  Google Scholar 

  40. Ozturk, E. and Budak, E., Modeling of 5-axis milling processes, Mach. Sci. Technol., 2007, vol. 11, no. 3, pp. 287–311.

    Google Scholar 

  41. Budak, E., Ozturk, E., and Tunc, L.T., Modeling and simulation of 5-axis milling processes, Ann. CIRP, 2009, vol. 58, no. 1, pp. 347–350.

    Article  Google Scholar 

  42. Bravo, U., Altuzarra, O., Lopez de Lacalle, L.N., et al., Stability limits of milling considering the flexibility of the workpiece and the machine, Int. J. Mach. Tools Manuf., 2005, vol. 45, pp. 1669–1680.

    Article  Google Scholar 

  43. Weinert, K., Kersting, P., Surmann, T., and Biermann, D., Modeling regenerative workpiece vibrations in five-axis milling, Prod. Eng. Res. Dev., 2008, no. 2, pp. 255–260.

    Article  Google Scholar 

  44. Biermann, D., Kersting, P., and Surmann, T., A general approach to simulating workpiece vibrations during five-axis milling of turbine blades, Ann. CIRP, 2010, vol. 59, no. 1, pp. 125–128.

    Article  Google Scholar 

  45. Voronov, S.A., Kiselev, I.A., and Arshinov, S.V., Implementation of numerical modeling of dynamics of multidimensional milling of complex profile parts during design of technological process, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser.: Mashinostr., 2012, no. 6, pp. 50–69.

    Google Scholar 

  46. Voronov, S.A., Nepochatov, A.V., and Kiselev, I.A., Assessment criteria of stability of milling of non-rigid parts, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2011, no. 1 (610), pp. 50–62.

    Google Scholar 

  47. Voronov, S. and Kiselev, I., Dynamics of flexible detail milling, Proc. Inst. Mech. Eng., K, 2011, vol. 225, no. 3, pp. 1177–1186.

    Google Scholar 

  48. Zakovorotny, V.L., Panov, E.Yu., and Potapenko, P.N., Properties of shaping motions during drilling of smalldiameter deep holes, Vestn. Donsk. Gos. Tekh. Univ., 2001, vol. 1, no. 2, pp. 81–93.

    Google Scholar 

  49. Pontryagin, L.S., Izbrannye trudy (Selected Research Works), Moscow: Nauka, 1988, vol. 2.

    MATH  Google Scholar 

  50. Tikhonov, A.N., Vasil’ev, A.B., and Volosov, V.M., Differential equations containing a small parameter, Tr. mezhd. simp. po nelineinym kolebaniyam (Proc. Int. Symp. on Nonlinear Oscillations), Kiev: Akad. Nauk UkrSSR, 1963, pp. 56–61.

    Google Scholar 

  51. Zakovorotnyj, V.L., Fam D.T., and Nguen S.T., Simulation of deformation shifts of the turning tool regards to the billet, Vestn. Donsk. Gos. Tekh. Univ., 2010, vol. 7 (50), pp. 1005–1015.

    Google Scholar 

  52. D’Angelo, R., Linear Time-Varying Systems: Analysis and Synthesis, Boston: Allyn and Bacon, 1970.

    MATH  Google Scholar 

  53. Lyapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya (General Problem of Motion Stability), Moscow: Gostekhizdat, 1950.

    Google Scholar 

  54. Berezkin, E.N., Lektsii po teoreticheskoi mekhanike (Lecturers on Theoretical Mechanics), Moscow: Mosk. Gos. Univ., 1968.

    Google Scholar 

  55. Zakovorotny, V.L. and Ladnik, I.V., Compilation of information model of the dynamic system of the metalcutting machine for the diagnosis of treatment process, Probl. Mashinostr. Nadezhnosti Mash., 1991, no. 4, pp. 75–81.

    Google Scholar 

  56. Zakovorotny, V.L., Bordachev, E.V., and Alekseichik, M.I., Dynamic monitoring of the status of the cutting process, Stanki Instrum., 1998, no. 12, pp. 6–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Zakovorotny.

Additional information

Original Russian Text © V.L. Zakovorotny, A.A. Gubanova, A.D. Lukyanov, 2016, published in STIN, 2016, No. 4, pp. 32–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakovorotny, V.L., Gubanova, A.A. & Lukyanov, A.D. Stability of shaping trajectories in milling: Synergetic concepts. Russ. Engin. Res. 36, 956–964 (2016). https://doi.org/10.3103/S1068798X16110216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16110216

Keywords

Navigation