Skip to main content
Log in

SPH modeling of chip formation in cutting unidirectional fiber-reinforced composite

  • Published:
Russian Engineering Research Aims and scope

Abstract

The machining of composites is of great interest in manufacturing today. To that end, it is necessary to calculate the cutting forces required and to predict the surface quality obtained. In the present work, the cutting zone of a unidirectional fiber-reinforced composite is simulated by the SPH method. The calculation results—specifically, the equivalent stress and the strain distribution—are compared with results obtained previously by the finite-element method and also with experimental data. The good agreement with experimental data indicates that the SPH method may expediently be used in simulating the cutting of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teti, R., Machining of composite materials, CIRP Ann., 2002, vol. 51, no. 2, pp. 611–634.

    Article  Google Scholar 

  2. Koshin, A.A., D’yakonov, A.A., and Shmidt, I.V., The modular structure of polymer-composite technologies, Vestn. Yuzh.-Ural. Gos. Univ., Mashinostr., 2015, vol. 15, no. 2, pp. 51–60.

    Google Scholar 

  3. Jahromi, S.A. and Bahr, B., An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites, Composites Sci. Technol., 2010, vol. 70, pp. 2290–2297.

    Article  Google Scholar 

  4. Gururaja, S. and Ramulu, M., Analytical formulation of subsurface stresses during orthogonal cutting of FRPs, Composites, Part A, 2010, vol. 41, pp. 1164–1173.

    Article  Google Scholar 

  5. Beletskii, E.N., The rheological models used in the simulation of cutting processes of antifriction carbon plastics used in power engineering, Instrum. Tekhnol., 2009, no. 32, pp. 180–185.

    Google Scholar 

  6. Mkaddem, A. and Mansori, M.E., Finite element analysis when machining UGF-reinforced PMCs plates: chip formation, crack propagation and induced-damage, Mater. Des., 2009, no. 30, pp. 3295–3302.

    Google Scholar 

  7. Zhou, L., Huang, S.T., Wang, D., and Yu, X.L., Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools, Int. J. Adv. Manuf. Technol., 2011, no. 52, pp. 619–626.

    Article  Google Scholar 

  8. Soldani, X., Santiuste, C., Mucoz-Sánchez, A., and Miguélez, M.H., Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites, Composites, Part A, 2011, no. 42, pp. 1205–1216.

    Article  Google Scholar 

  9. Mkaddem, A.A., Demirci, I., and Mansori, M., Micro-macro combined approach using FEM for modeling of machining of FRP composites: cutting forces analysis, Composites Sci. Technol., 2008, vol. 68, pp. 3123–3127.

    Article  Google Scholar 

  10. Dandekar, C.R. and Shin, Y.C., Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites, Composites, Part A, 2009, vol. 40, pp. 1231–1239.

    Article  Google Scholar 

  11. Rao, G.V.G., Mahajan, P., and Bhatnagar, N., Threedimensional macromechanical finite element model for machining of unidirectional-fiber reinforced polymer composites, Mater. Sci. Eng., A, 2008, vol. 498, pp. 142–149.

    Article  Google Scholar 

  12. Rao, G.V.G., Mahajan, P., and Bhatnagar, N., Micromechanical modeling of machining of FRP composites cutting force analysis, Composites Sci. Technol., 2007, no. 46, pp. 579–593.

    Article  Google Scholar 

  13. Rao, G.V.G., Mahajan, P., and Bhatnagar, N., Machining of UD-GFRP composites chip formation mechanism, Composites Sci. Technol., 2007, vol. 67, pp. 2271–2281.

    Article  Google Scholar 

  14. Shchurov, I.A. and Boldyrev, I.S., Simulation of the cutting of workpieces made of composite materials using the finite element method, Vestn. Yuzh.-Ural. Gos. Univ., Mashinostr., 2012, no. 12, pp. 143–147.

    Google Scholar 

  15. Johnson, G.R. and Cook, W.H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., 1985, vol. 21, no. 1, pp. 31–48.

    Article  Google Scholar 

  16. Corbett, B.M., Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers, Int. J. Impact Eng., 2006, vol. 33, pp. 431–440.

    Article  Google Scholar 

  17. Gray, G.T., Chen, S.R., Wright, W., and Lopez, M.F., Constitutive equations for metals under compression at high strain rates and high temperatures, in LA-12669-MS, IS-4 Report Section, New Mexico: Los Alamos Natl. Lab., 1994.

    Google Scholar 

  18. Tan, P., Lee, B., and Tsangalis, C., FEA modeling prediction of the transmitted overpressure and particle acceleration within a frame subjected to shock tube blast loadings, 18th World IMACS/MODSIM Congr., Cairns, Australia, July 13–17, 2009, Cairns, 2009, pp. 1657–1663.

    Google Scholar 

  19. Arola, D. and Ramulu, M., Orthogonal cutting of fiber-reinforced composites: a finite element analysis, Int. J. Mech. Sci., 1997, vol. 39, no. 5, pp. 597–613.

    Article  MATH  Google Scholar 

  20. Rao, G.V.G., Mahajan, P., and Bhatnagar, N., Threedimensional macromechanical finite element unidirectional-fiber reinforced polymer composites, Mater. Sci. Eng., A, 2008, vol. 498, pp. 142–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shchurov.

Additional information

Original Russian Text © I.A. Shchurov, A.V. Nikonov, I.S. Boldyrev, D.V. Ardashev, 2016, published in STIN, 2016, No. 3, pp. 36–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchurov, I.A., Nikonov, A.V., Boldyrev, I.S. et al. SPH modeling of chip formation in cutting unidirectional fiber-reinforced composite. Russ. Engin. Res. 36, 883–887 (2016). https://doi.org/10.3103/S1068798X1610018X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X1610018X

Keywords

Navigation