Advertisement

Russian Engineering Research

, Volume 36, Issue 10, pp 800–808 | Cite as

Quality of the locomotion system in planetary rovers

  • M. I. MalenkovEmail author
  • V. A. Volov
  • E. A. Lazarev
Article

Abstract

Methods that take account of the properties of the propulsion system and the terrain (along with their interactions) are outlined, for use in quality assessment of the locomotion system in planetary rovers in which wheels with individual electromechanical drives are mounted on a self-propelled chassis. Criteria for optimization of rigid metal wheels are determined, and selection criteria for balanced suspension systems are established.

Keywords

planetary rover locomotion system crosscountry ability balancing suspension wheel-walking propulser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bekker, M.G., Introduction to the Theory of Terrain–Machine Systems, Ann Arbor: Univ. of Michigan, 1969.Google Scholar
  2. 2.
    Anisov, K.S., Mastakov, V.I., Ivanov, O.G., et al., The lay-out and operation of the Luna-17 station and Lunokhod-1, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Vinogradova, A.P., Ed., Moscow: Nauka, 1971, vol. 1, pp. 7–20.Google Scholar
  3. 3.
    Leontovich, A.K., Ivanov, O.G., Pavlov, P.S., et al., Self-propelled chassis of Lunokhod-1 as a tool for study of the lunar surface, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2, pp. 25–42.Google Scholar
  4. 4.
    Avotin’sh, E.V., Borodachev, B.V., Vasin, Yu.I., et al., Analysis of work performance of self-propelled chassis on the Moon, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2, pp. 47–66.Google Scholar
  5. 5.
    Kemurdjian, A.L., Gromov, V.V., Cherkasov, I.I., and Shvarev, V.V., Avtomaticheskie stantsii dlya izucheniya poverkhnostnogo pokrova Luny (Automation Stations for Study of the Moon Surface), Moscow: Mashinostroenie, 1976, pp. 103–199.Google Scholar
  6. 6.
    Malenkov, M.I. and Kemurdjian, A.L., Tractive dynamics of the planetary rover, in Dinamika planetokhoda (Dynamics of a Planetary Rover), Petrov, B.N. and Kemurdjian, A.L., Eds., Moscow: Nauka, 1979, pp. 56–195.Google Scholar
  7. 7.
    Kemurdjian, A.L., From the Moon rover to the Mars rover, Planet. Rep., 1990, vol. 10, no. 4, pp. 4–11.Google Scholar
  8. 8.
    Malenkov, M.I., Creation of Lunokhod-1 as an outstanding scientific and technological achievement of the XX century, Sol. Syst. Res., 2013, vol. 47, no. 7, pp. 610–617.CrossRefGoogle Scholar
  9. 9.
    Malenkov, M., Self-propelled automatic chassis of Lunokhod-1: history of creation in episodes, Front. Mech. Eng., 2016, vol. 11, no. 1, pp. 60–86.CrossRefGoogle Scholar
  10. 10.
    Zhang, Y.H., Xiao, J., Zhang, X.W., et al., Design and implementation of Chang’E-3 rover location system, Sci. Chin., Technol. Sci., 2014, vol. 44, no. 5, pp. 483–491.MathSciNetGoogle Scholar
  11. 11.
    Basilevsky, A.T., Abdrahimov, A.M., Head, J.W., et al., Geologic characteristics of the Luna 17/Lunokhod-1 and Chang’E-3/Yutu landing sites, northwest Mare Imbrium of the Moon, Planet. Space Sci., 2015, vol. 117, pp. 385–400.CrossRefGoogle Scholar
  12. 12.
    Herkenhoff, K.E., Golombek, M.P., Guinness, E.A., et al., In situ observations of the physical properties of the Martian surface, in The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J.F., Ed., Cambridge: Cambridge Univ. Press, 2008, pp. 451–467.CrossRefGoogle Scholar
  13. 13.
    Kazhukalo, I.F., Walking principle in the propulsion systems of transport machines: hybrid wheel-walking propulsion systems, in Planetokhody (Planetary Rovers), Kemurdjian, A.L., Ed., Moscow: Mashinostroenie, 1982, pp. 65–107.Google Scholar
  14. 14.
    Kazhukalo, I.F., Malenkov, M.I., and Kemurdjian, A.L., Description and some results of the walking principles of the planetary rover tests, in Peredvizhenie po gruntam Luny i planet (Locomotion on the Grounds of the Moon and Planets), Kemurdjian, A.L., Moscow: Mashinostroenie, 1986, pp. 235–261.Google Scholar
  15. 15.
    Malenkov, M.I., Volov, V.A., Guseva, N.K., and Lazarev, E.A., Increasing the mobility of Mars rovers by improving the locomotion systems and their control algorithms, Russ. Eng. Res., 2015, vol. 35, no. 11, pp. 824–831.CrossRefGoogle Scholar
  16. 16.
    Harrington, B.D. and Voorhees, C., The challenges of designing the rocker–bogie suspension for the Mars exploration rover, Proc. 37th Aerospace Mechanisms Symp., Johnson Space Center, May 19–21, 2004, Galveston, TX, 2004.Google Scholar
  17. 17.
    MSL Curiosity Rover. http://mars.jpl.nasa.gov/msl.Google Scholar
  18. 18.
    Mars Exploration Rovers. http://marsrover.nasa.gov/science/objectives.html.Google Scholar
  19. 19.
    Kucherenko, V., Bogatchev, A., and Winnendael, M., Chassis concepts for ExoMars rover, Proc. 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), Noordwijk: Eur. Space Res. Technol. Centre, 2004.Google Scholar
  20. 20.
    Lee, C.G.-Y., Dalcolmo, J., Klinkner, S., et al., Design and manufacture of a full size breadboard ExoMars rover chassis, Proc. 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), Noordwijk: Eur. Space Res. Technol. Centre, 2006.Google Scholar
  21. 21.
    Apostolopoulos, D., Analytical configuration of wheeled robotic locomotion, Ph.D. Thesis, Pittsburgh, PA: Carnegie-Mellon Univ., 2001.Google Scholar
  22. 22.
    Thüer, T., Mobility evaluation of wheeled all-terrain robots. Metrics and application, PhD Dissertation, Zurich, 2009.Google Scholar
  23. 23.
    Naumov, V.N. and Zabavnikov, N.A., Interaction of the single wheel with the ground in relation to the evaluation of transport vehicle terrain, in Peredvizhenie po gruntam Luny i planet (Locomotion on the Grounds of the Moon and Planets), Kemurdjian, A.L., Moscow: Mashinostroenie, 1986, pp. 53–107.Google Scholar
  24. 24.
    RF Patent 2016114958, 2016 (unpublished).Google Scholar
  25. 25.
    Bechvai, N.E., Gromov, V.V., Egorov, A.I., Kuzhukalo, I.F., Kemurdjian, A.L., Komissarov, V.I., Korepanov, G.N., Mitin, B.V., Mishkinyuk, V.K., Sologub, P.S., and Shvartsburg, M.B., USSR Inventor’s Certificate no. 272076, 1970.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.AO NTTs ROKADSt. PetersburgRussia
  2. 2.OOO AKTRONSt. PetersburgRussia

Personalised recommendations