Skip to main content

Manufacture of metal–concrete basic components for high-precision lathes

An Erratum to this article was published on 01 March 2017

Abstract

Research and industrial experience with machine tools show that strict requirements on lathe performance may be met by using frames and bases made of nonmetallic polycrystalline materials (metal–concrete composites). A metal–concrete composite is a casting of the required structure consisting of a massive nonmetallic component, a reinforcing housing, and a set of metallic inserts.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Balan, T.A., The key ratios for structurally heterogenic materials in complex stress state, Probl. Prochnosti, 1985, no. 12, pp. 106–115.

    Google Scholar 

  2. 2.

    Betonnye konstruktsii mashin i oborudovaniya (Concrete Constructions of Machines and Equipment), Brailovskii, M.I., Ed., Moscow: Nauchno-Issled., Proekt.-Konstr. Tekhnol. Inst. Betona Zhelezobetona, 1990.

  3. 3.

    Brailovskii, M.I., Zak, M.L., and Rimshin, V.I., Calculation of the strength and stiffness of reinforced concrete crossbars of presses, in Betonnye konstruktsii mashin i oborudovaniya (Concrete Constructions of Machines and Equipment), Brailovskii, M.I., Ed., Moscow: Nauchno-Issled., Proekt.-Konstr. Tekhnol. Inst. Betona Zhelezobetona, 1990.

    Google Scholar 

  4. 4.

    Brailovskii, M.I., Rekomendatsii po proektirovaniyu bazovykh detalei stanochnogo oborudovaniya i opornykh konstruktsii pod bloki agregatirovannogo oborudovaniya iz zhelezobetona i spetsial’nykh betonov (Recommendations for the Design of Basic Parts of Machine Tools and Support Constructions for the Blocks of Aggregated Equipment of Reinforced Concrete and Special Concretes), Moscow: ROSEP, 2000.

    Google Scholar 

  5. 5.

    Gambarov, G.A., Creep and shrinkage of triaxialstressed concrete, Beton Zhelezobeton (Moscow), 1962, no. 1, pp. 18–20.

    Google Scholar 

  6. 6.

    Gvozdev, A.A., Creep of concrete, in Mekhanika tverdogo tela (Mechanics of Solids), Moscow: Nauka, 1966, pp. 38–52.

    Google Scholar 

  7. 7.

    Geniev, G.A., Kisyuk, V.N., and Tyupin, G.A., Teoriya plastichnosti betona i zhelezobetona (Theory of Concrete and Reinforced Concrete Plasticity), Moscow: Stroiizdat, 1974.

    Google Scholar 

  8. 8.

    Zak, M.L. and Gushcha, Yu.P., Analytical representation of concrete compression diagram, in Sovershenstvovanie metodov rascheta staticheski neopredelimykh zhelezobetonnykh konstruktsii (Improvement of Calculation Techniques of Statically Indeterminate Reinforced Concrete Constructions), Moscow: Nauchno-Issled., Proekt.-Konstr. Tekhnol. Inst. Betona Zhelezobetona, 1987, pp. 103–107.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. I. Brailovskii.

Additional information

Original Russian Text © M.I. Brailovskii, A.G. Voskoboinik, A.A. D’yakonov, 2016, published in STIN, 2016, No. 3, pp. 25–31.

An erratum to this article is available at http://dx.doi.org/10.3103/S1068798X17030236.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brailovskii, M.I., Voskoboinik, A.G. & D’yakonov, A.A. Manufacture of metal–concrete basic components for high-precision lathes. Russ. Engin. Res. 36, 872–878 (2016). https://doi.org/10.3103/S1068798X16100051

Download citation

Keywords

  • lathes
  • metal–concrete structures
  • composites
  • basic components