Skip to main content
Log in

Ultrasonic motorized spindle with hydrostatic bearings

  • Published:
Russian Engineering Research Aims and scope

Abstract

Ultrasonic and acoustic axial spindle oscillations improve the productivity and product quality in machining, reduce the cutting forces, and increase the tool life in the grinding, milling, and boring of structural components, including those made from materials that are hard to machine. Industrial prototypes of motorized spindles with axial spindle oscillations have been developed by specialists at Siberian Federal University and AO NPP Radiosvyaz and patented in Russia. These spindle units include contactless hydrostatic bearings, a resonant-frequency generator (a piezo generator for ultrasonic spindles and a hydromechanical generator for acoustic spindles), and a local concentrator for the spindle’s longitudinal intrinsic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, J.H., A study on an ultrasonic vibration assisted grinding for ceramics, Trans. Korean Soc. Automot. Eng., 1996, vol. 4, no. 5, pp. 37–48.

    Google Scholar 

  2. Onikura, H., Ohnishi, O., Take, Y., and Kobayashi, A., Fabrication of micro carbide tools by ultrasonic vibration grinding, CIRP Ann., 2000, vol. 49, pp. 257–260.

    Article  Google Scholar 

  3. Wu, Y., Nomura, M., Kato, M., and Tachibana, T., Study of internal ultrasonic vibration assisted grinding of small holes—construction of ultrasonic vibration spindle and its fundamental performances, J. Jpn. Soc. Abrasive Technol., 2003, vol. 47, no. 12, pp. 550–555.

    Google Scholar 

  4. Choi, Y.J., Park, K., Hong, H., Kim, K., Lee, S.W., and Choi, H.Z., Effect of ultrasonic vibration in grinding; horn design and experiment, Int. J. Precis. Eng. Manuf., 2013, vol. 14, no. 11, pp. 1873–1879.

    Article  Google Scholar 

  5. Nomura, M., Wu, Y., Kato, M., Tachibana, T., and Kuriyagawa, T., Study of internal ultrasonic vibration assisted grinding of small holes—mechanism of grinding force reduction due to ultrasonic vibration, J. Jpn. Soc. Abrasive Technol., 2005, vol. 49, no. 12, pp. 691–696.

    Google Scholar 

  6. Yang, X.H., Han, J.C., Zhang, Y.M., Zuo, H.B., and Zhang, X.J., Research on ultrasonic vibration grinding of the hard and brittle materials, Chin. J. Aeronaut., 2006, vol. 19, pp. 9–13.

    Article  Google Scholar 

  7. Shimada, K., Zhou, T., Yan, J., and Kuriyagawa, T., Statistical approach for calculating ground surface roughness of ultrasonic assisted grinding, J. Jpn. Soc. Abrasive Technol., 2012, vol. 56, no. 11, pp. 752–757.

    Google Scholar 

  8. Shimada, K., Tateishi, T., Yoshihara, N., Yan, J., and Kuriyagawa, T., Ultrasonic-assisted micro-grinding with electroplated diamond wheels, J. Jpn. Soc. Abrasive Technol., 2009, vol. 53, no. 1, pp. 45–48.

    Google Scholar 

  9. Park, K.H. and Kwon, P.Y., Flank wear of multi-layer coated tool and wear prediction using abrasive wear model, Proc. ASME Int. Manufacturing Science and Engineering Conf., West Lafayette, IN: Am. Soc. Mech. Eng., 2009, vol. 1, pp. 331–340.

    Google Scholar 

  10. Cong, W.L., Feng, Q., Pei, Z.J., Denies, T.W., and Treadwell, C., Experimental study on cutting temperature in rotary ultrasonic machining, Proc. Conf. of North American Manufacturing Research Institution/SME 2011, Corvallis, OR, 2011, vol. 39.

    Google Scholar 

  11. Tawakoli, T. and Azarhoushang, B., Effects of ultrasonic assisted grinding on CBN grinding wheels performance, Proc. ASME Int. Manufacturing Science and Engineering Conf., October 4–7, 2009, West Lafayette, IN, 2009.

    Google Scholar 

  12. Wu, J., Cong, W., Williams, R., and Pei, Z.J., Stochastic modeling and analysis of rotary ultrasonic machining, Proc. ASME Int. Manufacturing Science and Engineering Conf., October 4–7, 2009, West Lafayette, IN

  13. Kul’kov, A.V., Abrasive superfinishing using ultrasound, Izv. Volgograd. Gos. Tekh. Univ., 2010, no. 6, pp. 20–26.

    Google Scholar 

  14. Kobayashi, S., Shimada, K., Murakoshi, C., Koike, K., Takahashi, M., and Tachibana, T., Development of an ultrasonically-assisted electrolytic grinding system, Int. J. Autom. Technol., 2013, vol. 7, no. 6, pp. 654–662.

    Article  Google Scholar 

  15. Karev, E.A. and Tulisov, I.N., Efficiency improvement of the round external grinding by axial oscillation of billets, Vestn. Ul’yanovsk. Gos. Tekh. Univ., 2004, no. 4, pp. 32–34.

    Google Scholar 

  16. Smol’nikov, N.Ya., Agapov, S.I., Fedyanov, N.A., and Korpelyanskii, O.F., Analysis of possible introduction of ultrasonic oscillations into the cutting zone, Izv. Volgograd. Gos. Tekh. Univ., 2009, no. 5, pp. 47–50.

    Google Scholar 

  17. Lee, B.G., Kim, K.L., and Kim, K.E., Design of ultrasonic vibration tool horn for micromachining using FEM, Trans. Korean Soc. Mach. Tool Eng., 2008, vol. 17, no. 6, pp. 63–70.

    Article  Google Scholar 

  18. Choi, Y.J., Park, K., Hong, H., Kim, K., Lee, S.W., and Choi, H.Z., Effect of ultrasonic vibration in grinding; horn design and experiment, Int. J. Precis. Eng. Manuf., 2013, vol. 14, no. 11, pp. 1873–1879.

    Article  Google Scholar 

  19. Wu, Y., Yokoyama, S., Sato, T., Lin, W., and Tachibana, T., Development of a new rotary ultrasonic spindle for precision ultrasonically assisted grinding, Int. J. Mach. Tools Manuf., 2009, vol. 49, pp. 933–938.

    Article  Google Scholar 

  20. Wu, Y., Tamano, M., Kato, M., and Tachibana, T., Inducing a machine spindle to ultrasonically vibrate by fluctuating electromagnetic force, Int. J. Appl. Electromagn. Mech., 2005, vol. 25, pp. 621–626.

    Google Scholar 

  21. Kobayashi, S., Shimada, K., Murakoshi, C., Koike, K., Takahashi, M., Tachibana, T., and Kuriyagawa, T., Development of an ultrasonically-assisted electrolytic grinding system, Int. J. Autom. Technol., 2013, vol. 7, no. 6, pp. 654–662.

    Article  Google Scholar 

  22. Zeng, W.M., Li, Z.C., Churi, N.J., Pei, Z.J., and Treadwell, C., Experimental investigation into rotary ultrasonic machining of alumina, ASME 2004 Int. Mechanical Engineering Congress and Exposition, Anaheim, CA, November 13–19, 2004, New York: Am. Soc. Mech. Eng., 2004, no. IMECE2004-61700, pp. 207–212.

    Google Scholar 

  23. Shatokhin, S.N., Kurzakov, A.S., and Golovin, A.O., RF Patent 2556157, 2004.

    Google Scholar 

  24. Shatokhin, S.N., Pikalov, Ya.Yu., and Demin, V.G., Adaptive contactless sliding bearings with floating regulators of lubrication supply (hydrostatic, aerostatic) for spindle assemblies and guided metal cutting machines, Tekhnol. Mashinostr., 2006, no. 9, pp. 29–33.

    Google Scholar 

  25. Elka Precision Company, Hydrostatic precision grinding spindles and milling spindles. http://www.elkaprecision. com.

  26. Kashchenevsky, L., US Patent 8646979, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shatokhin.

Additional information

Original Russian Text © S.N. Shatokhin, A.O. Golovin, 2016, published in STIN, 2016, No. 1, pp. 29–33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatokhin, S.N., Golovin, A.O. Ultrasonic motorized spindle with hydrostatic bearings. Russ. Engin. Res. 36, 692–695 (2016). https://doi.org/10.3103/S1068798X16080190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16080190

Keywords

Navigation