Skip to main content
Log in

Spark plasma sintering of nanostructured powder materials

  • Published:
Russian Engineering Research Aims and scope

Abstract

Spark plasma sintering is a method of consolidating nanostructured powder materials and also composites and gradient materials in the presence of an electromagnetic field, by means of low-voltage sources of powerful current. The main benefit of spark plasma sintering is that previously impossible structures, properties, and compositions may be produced. The finite-element method is used to analyze the consolidation of samples by spark plasma sintering and by a hybrid method in which spark plasma sintering is combined with hot pressing. Corresponding numerical models are tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COMSOL Multiphysics v. 4.3a Material library.

  2. Kolotyrkin, Ya.M. and Knyazheva, V.M., Itogi Nauki i Tekhniki, Seriya: Korroziya i Zashchita ot Korrozii (Achievements of Science and Technology, Corrosion and Corrosion Protection), Moscow: Vseross. Inst. Nauch. Tekh. Inform., Ross. Akad. Nauk, 1974, vol. 3.

    Google Scholar 

  3. Yang, H., Multi-field simulation of the spark plasma sintering process, Thesis in Engineering Mechanics, Philadelphia: Pa. State Univ., 2010.

    Google Scholar 

  4. Schunk–innovative insulation materials. http://www. ingenieurparadiesde/sixcms/mediaphp/1466/20_39e_ Innovative_Insulation_Materialspdf

  5. Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., and van der Biest, O., Modeling of the temperature distribution during field assisted sintering, Acta Mater., 2005, vol. 53, pp. 4379–4388.

    Article  Google Scholar 

  6. http://wwwilma-sealingcom/filephp?Grafitovaya_ folga_Sigraflex-gid-121-136-416pdf

  7. Tiwari, D., Basu, D., and Biswas, K., Simulation of thermal and electric field evolution during spark plasma sintering, Ceram. Int., 2009, no. 35, pp. 699–708.

    Article  Google Scholar 

  8. Vanmeensel, K., Laptev, A., van der Biest, O., and Vleugels, J., Field assisted sintering of electro-conductive ZrO2-based composites, J. Eur. Ceram. Soc., 2007, no. 27, pp. 979–985.

    Article  Google Scholar 

  9. Zhang, J., Numerical simulation of thermoelectric phenomena in field activated sintering, PhD Thesis, Philadelphia, PA: Drexel Univ., 2004.

    Google Scholar 

  10. Khaleghi, E.A., Tailored net-shape powder composites by spark plasma sintering, PhD Dissertation in Engineering Science, San Diego, CA: Univ. of California, 2012.

    Google Scholar 

  11. Ruskola, M., Numerical modeling of pulsed electric current sintering process, MSc Thesis in Technology, Espoo, Finland: Aalto Univ., 2014.

    Google Scholar 

  12. Voisina, T., Duranda, L., Karnatakbat, N., Galletc, S.L., Thomasd, M., Le Berree, Y., Castagnef, J.F., and Coureta, A., Temperature control during spark plasma sintering and application to up-scaling and complex shaping, J. Mater. Process. Technol., 2013, no. 213, pp. 269–278.

    Article  Google Scholar 

  13. Wang, C., Cheng, L., and Zhao, Z., FEM analysis of the temperature and stress distribution in spark plasma sintering: modeling and experimental validation, Comput. Mater. Sci., 2010, no. 49, pp. 351–362.

    Article  Google Scholar 

  14. Dmitriev, A.M., Korobova, N.V., and Tolmachev, N.S., Experimental verification of the results of computer simulation of the stresses on the element of deforming tool, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 2(29), pp. 44–49.

    Google Scholar 

  15. Kalyakulin, S.Yu. and Kuz’min, V.V., Development of mathematical model of technological process parameters, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 3 (30), pp. 40–44.

    Google Scholar 

  16. Kabak, I.S., Neural network model for forecasting and assessment of software reliability, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 1 (28), pp. 107–111.

    Google Scholar 

  17. Bolbukov, V.P., Regulation of the energy of fast gas atoms by change in the resistor strength, located between the working chamber and the emission grid of a source, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 3 (30), pp. 54–57.

    Google Scholar 

  18. Sobolev, A.N., Kosov, M.G., and Nekrasov, A.Ya., Simulation of construction of the body parts using the estimated trace elements, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 3 (30), pp. 98–10.

    Google Scholar 

  19. Kozochkin, M.P. and Solis Pinargote, N.W., Analysis of the effects of vibration turning using coolants, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 4 (31), pp. 67–73.

    Google Scholar 

  20. Frolov, E.B., Kryukov, V.V., and Kryukov, A.V., Integration of the systems of automated design of technological processes and operational industrial systems based on control database formation, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 4 (31), pp. 133–139.

    Google Scholar 

  21. Grigor’ev, S.N., Kuzin, V.V., Fedorov, S.Yu., Tibor Szalay, and Balazs Farkas, Technological aspects of the electrical-discharge machining of small-diameter holes in a high-density ceramic. Part 1, Refract. Ind. Ceram., 2014, vol. 55, no. 4, pp. 330–334.

    Google Scholar 

  22. Kuzin, V.V., Grigor’ev, S.N., and Ermolin, V.N., Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 1. Effect of complex mechanical loading, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 416–419.

    Article  Google Scholar 

  23. Kuzin, V.V., Grigor’ev, S.N., and Ermolin, V.N., Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 2. Effect of thermal loading, Refract. Ind. Ceram., 2014, vol. 54, no. 6, pp. 497–501.

    Article  Google Scholar 

  24. Kuzin, V.V., Grigor’ev, S.N., and Ermolin, V.N., Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 3. Effect of a distributed force load, Refract. Ind. Ceram., 2014, vol. 55, no. 1, pp. 36–39.

    Article  Google Scholar 

  25. Kuzin, V.V., Grigor’ev, S.N., and Ermolin, V.N., Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 4. Combined effect of force and thermal loads, Refract. Ind. Ceram., 2014, vol. 55, no. 1, pp. 40–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Smirnov.

Additional information

Original Russian Text © A.V. Smirnov, D.I. Yushin, N.W. Solis Pinargote, P.Yu. Peretyagin, R. Torrecillas, 2015, published in STIN, 2015, No. 8, pp. 34–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V., Yushin, D.I., Solis Pinargote, N.W. et al. Spark plasma sintering of nanostructured powder materials. Russ. Engin. Res. 36, 249–254 (2016). https://doi.org/10.3103/S1068798X16030163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16030163

Keywords

Navigation