Skip to main content
Log in

Monitoring of electric discharge machining by means of acoustic emission

  • Published:
Russian Engineering Research Aims and scope

Abstract

Electric discharge machining is accompanied by acoustic-emission signals, which may be used monitoring, diagnostics, and control of the process. Experiments show that the acoustic signals permit assessment of the efficiency of the current pulses supplied and optimal technological adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okun’kova, A.A., Design and production of shaping parts of molds using integrated CAD/CAM systems and Pro/Engineer, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2010, no. 3 (11), pp. 56–60.

    Google Scholar 

  2. Okun’kova, A.A., Automation of technological preparation of production of the mold parts produced by electrical discharge treatment, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2008, no. 4 (4), pp. 76–81.

    Google Scholar 

  3. Tzeng, Y. and Chen, F., Multi-objective optimization of high-speed EDM process using a Tagachi fuzzy-based approach, Mater. Des., 2007, vol. 28, no. 4, pp. 1159–1168.

    Article  MathSciNet  Google Scholar 

  4. Korenblyum, M.V., Levit, M.L., and Livshits, A.L., Adaptivnoe upravlenie elektroerozionnymi stankami (Adaptive Control of EDM Machines), Moscow: Nauch. Issled. Inst. Mashinostr., 1977.

  5. Kozak, J., Rajurkar, K., and Makkar, J., Selected problems of micro EDM, J. Mater. Proc. Technol., 2004, vol. 149, nos. 1–3, pp. 426–431.

    Article  Google Scholar 

  6. Oniszczuk, D. and Swiercz, R., An investigation into the impact of electrical pulse character on surface texture in the EDM and WEDM process, Adv. Manuf. Sci. Technol., 2012, vol. 36, no. 3, pp. 43–53.

    Google Scholar 

  7. Grigoriev, S.N., Kozochkin, M.P., Sabirov, F.S., and Sinopal’nikov, V.A., Modern problems of technical diagnostics of machine tools, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2010, no. 4, pp. 27–36.

    Google Scholar 

  8. Grigoriev, S.N., Kozochkin, M.P., Sabirov F.S., and Kutin, A.A., Diagnostic systems as basis for technological improvement, Proc. CIRP, 2012, vol. 1, pp. 599–604.

    Article  Google Scholar 

  9. Bushuev, V.V. and Sabirov, F.S., Fields of development of the global machine industry, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2010, no. 1 (9), pp. 24–30.

    Google Scholar 

  10. Kozochkin, M.P. and Sabirov, F.S., Operative diagnostics in metal treatment: problems and objectives, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2008, no. 3, pp. 14–18.

    Google Scholar 

  11. Kozochkin, M.P., Porvatov, A.N., and Sabirov, F.S., The fitting of technological equipment with data measuring system, Meas. Tech., 2012, vols. 55, no. 5, pp. 530–534.

    Article  Google Scholar 

  12. Kozochkin, M.P., Nonlinear cutting dynamics, Russ. Eng. Res., 2012, vol. 32, no. 1, pp. 108–110.

    Article  Google Scholar 

  13. Kozochkin, M.P., Influence of machine-tool dynamics on the vibration in cutting, Russ. Eng. Res., 2014, vol. 34, no. 9, pp. 573–577.

    Article  Google Scholar 

  14. Kozochkin, M.P., Vibration in cutting processes, Russ. Eng. Res., 2009, vol. 29, no. 4, pp. 428–432.

    Article  Google Scholar 

  15. Kozochkin, M.P. and Porvatov, A.N., Effect of adhesion bonds in friction contact on vibroacoustic signal and autooscillations, J. Frict. Wear, 2014, vol. 35, no. 5, pp. 389–395.

    Article  Google Scholar 

  16. Nemilov, E.F., Spravochnik po elektroerozionnoi obrabotke materialov (Handbook on Electrodischarge Treatment of Materials), Leningrad: Mashinostroenie, 1989.

    Google Scholar 

  17. Artamonov, B.A. and Volkov, Yu.S., Analiz modelei elektrokhimicheskoi i elektroerozionnoi obrabotki. Chast’ 2. Modeli protsessov elektroerozionnoi obrabotki. Provolochnaya vyrezka (Analysis of Models of Electrochemical and Electrodischarge Treatment, Part 2: Models of Electrodischarge Treatment. Wire Cutting), Moscow: Vseross. Nauchno-Issled. Inst. Patent. Inform., 1991.

    Google Scholar 

  18. Kozochkin, M.P., Kochinev, N.A., and Sabirov, F.S., Diagnostics and monitoring of complex production processes using measurement of vibration-acoustic signals, Meas. Tech., 2006, no. 7 (49), pp. 672–678.

    Article  Google Scholar 

  19. Kozochkin, M.P., Multi-parameter diagnostics of technological systems for material cutting, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2014, no. 1 (28), pp. 13–19.

    Google Scholar 

  20. Kozochkin, M.P. and Porvatov, A.N., Mechanical measurements: estimation of uncertainty in solving multi-parameter diagnostic problems, Meas. Tech., 2015, vol. 58, no. 2, pp. 173–178.

    Article  Google Scholar 

  21. Kozochkin, M.P., Maslov, A.R., and Porvatov, A.N., Control of cutting by integration of subsystem for diagnostics into the system of metal-working machine, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, 2011, no. 3, pp. 110–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kozochkin.

Additional information

Original Russian Text © M.P. Kozochkin, S.N. Grigor’ev, A.A. Okun’kova, A.N. Porvatov, 2015, published in STIN, 2015, No. 8, pp. 28–33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozochkin, M.P., Grigor’ev, S.N., Okun’kova, A.A. et al. Monitoring of electric discharge machining by means of acoustic emission. Russ. Engin. Res. 36, 244–248 (2016). https://doi.org/10.3103/S1068798X16030114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16030114

Keywords

Navigation