Skip to main content
Log in

Plasma–powder application of antifrictional babbitt coatings modified by carbon nanotubes

  • Published:
Russian Engineering Research Aims and scope

Abstract

Modification of Babbitt coatings by carbon nanotubes in plasma–powder application is considered. A model is proposed for the interaction of a graphene-like surface and atoms from the Babbitt alloy. The influence of carbon nanotubes obtained by different means on the performance of antifrictional coatings is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potekhin, B.A., Ilyushin, V.V., and Khristolyubov, A.S., Improvement methods of the strength of nonferrous alloys with intermetallide reinforcement, in XLVII mezhd. konf. “Akrual’nye problemy prochnosti” (XLVII Int. Conf. “Relevant Problems of Strength”), 2008, part 1, pp. 272–274.

    Google Scholar 

  2. Potekhin, B.A., Glushchenko, A.N., and Il’yushin, V.V., Properties of babbit B83, Tekhnol. Met., 2006, no. 3, pp. 17–23.

    Google Scholar 

  3. Potekhin, B.A., Il’yushin, V.V., and Khristolyubov, A.S., Effect of casting methods on the structure and properties of tin babbit, Met. Sci. Heat Treat., 2009, vol. 51, nos. 7–8, pp. 378–382.

    Article  Google Scholar 

  4. Evdokimov, I.A., Chernyshova, T.A., Pivovarov, G.I., et al., Tribological behavior of aluminum-matrix composites reinforced with carbon nanostructures, Inorg. Mater. Appl. Res., 2014, no. 3, pp. 255–262.

    Article  Google Scholar 

  5. Stetsenko, V.Yu. and Rivkin, A.I., The effect of carbon nanotubes on the structure and friction wear resistance of cast babbits, Liteinoe Proizvod., 2011, no. 2, pp. 9, 10.

    Google Scholar 

  6. Kobernik, N.V., Shernyshov, G.G., Gvozdev, P.P., et al., Antifriction properties of coatings obtained by plasma-jet hard-facing of babbit with carbon nanotubes, Svarka Diagn., 2013, no. 3, pp. 27–31.

    Google Scholar 

  7. Gvozdev, P.P., Kobernik, N.V., Mikheev, P.S., et al., The effect of carbon nanotubes on the structure and properties of antifriction coatings, Svarka Diagn., 2013, no. 6, pp. 36–39.

    Google Scholar 

  8. Verlet, L., Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev., 1967, vol. 159, no. 1, pp. 98–103.

    Article  Google Scholar 

  9. Kohn, W. and Sham, L.J., Self-consistent equation including exchange and correlation effects, Phys. Rev. A: At., Mol., Opt. Phys., 1965, vol. 140, no. 4, pp. A1133–A1138.

    Article  MathSciNet  Google Scholar 

  10. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., et al., Restoring the density-gradient expansion for solids and surfaces, Phys. Rev. Lett., 2008, pp. 136406-1–136406-4.

    Google Scholar 

  11. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integrations, Phys. Rev. B, 1976, vol. 13, pp. 5188–5192.

    Article  MathSciNet  Google Scholar 

  12. Giannozzi, P., Baroni, S., Bonini, N., et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter., 2009, vol. 21, no. 39. http://dx.doi.org/10.1088/0953-8984/21/39/395502

    Google Scholar 

  13. Rappe, A.M., Rabe, K.M., Kaxiras, E., and Joannopoulos, J.D., Optimized pseudopotentials, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 41, no. 2, pp. 1227–1230.

    Article  Google Scholar 

  14. Nasibulina, L.I., Koltsova, T.S., Joenakanen, T., et al., Direct synthesis of carbon nanofibers on the surface of copper powder, Carbon, 2010, vol. 48, no. 15, pp. 4559–4562.

    Article  Google Scholar 

  15. Vaganov, V.E., Zakharov, V.D., and Reshetnik, V.V., Non-catalytic production of carbon nanotubes on cooper powder material, Fiz. Khim. Obrab. Mater., 2012, no. 6, pp. 65–68.

    Google Scholar 

  16. Park, M., Kim, B.-H., Kim, S., et al., Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups, Carbon, 2011, no. 49, pp. 811–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kobernik.

Additional information

Original Russian Text © N.P. Aleshin, N.V. Kobernik, R.S. Mikheev, V.E. Vaganov, V.V. Reshetnyak, A.V. Aborkin, 2015, published in Vestnik Mashinostroeniya, 2015, No. 10, pp. 67–71.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, N.P., Kobernik, N.V., Mikheev, R.S. et al. Plasma–powder application of antifrictional babbitt coatings modified by carbon nanotubes. Russ. Engin. Res. 36, 46–52 (2016). https://doi.org/10.3103/S1068798X16010032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16010032

Keywords

Navigation