Advertisement

Russian Engineering Research

, Volume 35, Issue 11, pp 824–831 | Cite as

Increasing the mobility of Mars rovers by improving the locomotion systems and their control algorithms

  • M. I. MalenkovEmail author
  • V. A. Volov
  • N. K. Guseva
  • E. A. Lazarev
Article

Abstract

The operation of Mars rovers produced in the United States is analyzed. Their shortcomings are considered and methods for their elimination are proposed. Directions for future development in this area are suggested. Control algorithms for a new generation of planetary rovers are discussed.

Keywords

Mars rover propulsion unit control algorithm wheel-walking propulsion adaptive suspension locomotion system mobility cross-country ability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peredvizhnaya laboratoriya na Lune—Lunokhod-1 (Lunokhod-1 Mobile Lunar Laboratory), Vinogradov, A.P., Ed., Moscow: Nauka, 1971, vol. 1.Google Scholar
  2. 2.
    Kemurdjian, A.L., Gromov, V.V., Cherkasov, I.I., and Shvarev, V.V., Avtomaticheskie stantsii dlya izucheniya poverkhnostnogo pokrova Luny (Automation Stations for Studying the Lunar Surface), Moscow: Mashinostroenie, 1976.Google Scholar
  3. 3.
    Peredvizhnaya laboratoriya na Lune—Lunokhod-1 (Lunokhod-1 Mobile Lunar Laboratory), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2.Google Scholar
  4. 4.
    Malenkov, M., Maurete, M., Koutchetenko, V., et al., Proceedings of the ASTRA’06 Workshop, Noordwijk, the Netherlands: ESTEC, 2006.Google Scholar
  5. 5.
    Bekker, M.G., Introduction to the Theory of Terrain–Machine Systems, Ann Arbor: University of Michigan, 1969.Google Scholar
  6. 6.
    Kemurdjian, A.L., From the Moon Rover to the Mars Rover, Planetary Rep., 1990, vol. 10, no. 4, pp. 4–11.Google Scholar
  7. 7.
    Friedman, L.D. and Heinsheimer, T., Reasons to be proud: Lessons of the great rover adventure, Planetary Rep., 1992, vol. 12, no. 6, pp. 16–18.Google Scholar
  8. 8.
    Kemurdjian, A.L., Gromov, V.V., Kazhukalo, I.F., et al., Soviet development of planet rovers in period 1964–1990, Proceedings of the First International Symposium on Planet Rovers: Purpose, Technology and Design, Toulouse, 1992.Google Scholar
  9. 9.
    Kazhukalo, I.F., Printsip shaganiya v dvizhitelyakh transportnykh mashin. Kolesno-shagayushchii dvizhitel’. Planetokhody (Walking principle in the propulsion systems of transport machines: Hybrid wheel-walking propulsion systems, Planetokhody (Planetary Rovers)), Kemurdjian, A.L., Ed., Moscow: Mashinostroenie, 1982, pp. 65–107.Google Scholar
  10. 10.
    Gromov, V.V., Kazhukalo, I.F., Malenkov, M.I., et al., Peredvizhenie po gruntam Luny i planet (Locomotion over Planetary and Lunar Surfaces), Kemurdjian, A.L., Ed., Moscow: Mashinostroenie, 1986, pp. 235–261.Google Scholar
  11. 11.
    Harrington, B.D. and Voorhees, C., The challenges of designing the rocker–bogie suspension for the Mars exploration rover, Proceedings of the Thirty-Seventh Aerospace Mechanisms Symposium, Johnson Centre, 2004.Google Scholar
  12. 12.
    Malenkov, M.I. and Kemurdjian, A.L., Tractional dynamics of planetary rovers, Dinamika planetokhoda (Dynamics of Planetary Rovers), Petrov, B.N. and Kemurdjian, A.L., Eds., Moscow: Nauka, Fiz.-Mat. Lit., 1969, pp. 144–149.Google Scholar
  13. 13.
    Kucherenko, V., Bogatchev, A., and Winnendael, M., Chassis concepts for ExoMars rover, Proceedings of the Eighth ESA ASTRA Workshop, Noordwijk, the Netherlands: ESTEC, 2004.Google Scholar
  14. 14.
    Herkenhoff, K.E., Golombek, M.P., Guinness, E.A., et al., In situ observations of the physical properties of the Martian surface, The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J.F., Ed., Cambridge University Press, 2008, pp. 451–467.Google Scholar
  15. 15.
    Arvidson, R.E., Anderson, R.C., Bartlett, W.P., et al., Localization and physical properties experiments conducted by Spirit at Gusev crater, Science, 2004, vol. 305, pp. 821–824.CrossRefGoogle Scholar
  16. 16.
    Malenkov, M.I., Bo, S., Gromov, V.V., et al., Key technologies of the Moon exploration: Realization and perspectives of highly effective locomotion systems for the Moon rovers, J. Astronautics (China), 2007, vol. 28, no. 4, pp. 105–114.Google Scholar
  17. 17.
    Malenkov, M.I. and Stepanov, V.V., Russian technologies of planetary rover locomotion systems, Fifty Years of Space Research Science, Moscow: Space Research Institute, 2009, pp. 257–272.Google Scholar
  18. 18.
    Krainov, A.M., Vorontsov, V.A., and Malenkov, M.I., Predicting the design outline of the lunar rover as an element in the Russian program of lunar research, Materialy XLIX chtenii K.E. Tsiolokovskii i strategiya kosmonavtiki (Proceedings of the Forty-Ninth Lectures on Tsiolokovskii and Cosmonautic Strategy), Kaluga, 2014, pp. 173–174.Google Scholar
  19. 19.
    Abdulkhalikov, R.M., Adov, A.A., Akimov, V.N., et al., Manned Mission to Mars, Koroteyev, A.S., Ed., Moscow: Tsiolovskii Russian Academy of Cosmonautics, 2006.Google Scholar
  20. 20.
    Heverly, M., Development of the Tri-ATHLETE lunar vehicle prototype, Proceedings of the Fortieth Aerospace Mechanisms Symposium, Cape Canaveral: NASA, 2010, pp. 317–326.Google Scholar
  21. 21.
    Bartlett, P., Wettergreen, D., and Whittaker, W.L., Design of the Scarab rover for mobility and drilling in lunar cold traps, Proceedings of the International Symposium on Artificial Intelligence: Robotics and Automation in Space, Los Angeles, 2008.Google Scholar
  22. 22.
    Amar, F.B., Grand, C., and Besseron, G., Performance evaluation of locomotion modes of a hybrid wheellegged robot for self-adaptation to ground conditions, Proceedings of the Eighth ESA ASTRA Workshop, Noordwijk, the Netherlands: ESTEC, 2004, pp. 1–7.Google Scholar
  23. 23.
    Leppänen, I., Automatic locomotion mode control of wheel-legged robots, Research Reports: Automation Technology Laboratory, Helsinki: Helsinki University, 2007, ser. A, no. 30.Google Scholar
  24. 24.
    Apostolopoulos, D., Analytical Configuration of Wheeled Robotic Locomotion, Ph.D. Thesis, Carnegie–Mellon University, Pittsburgh, Pennsylvania, 2001.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • M. I. Malenkov
    • 1
    Email author
  • V. A. Volov
    • 1
  • N. K. Guseva
    • 1
  • E. A. Lazarev
    • 1
  1. 1.STC “ROCAD”St Petersburg Polytechnic University, ACTRON Co.LtdSt. PetersburgRussia

Personalised recommendations