Skip to main content
Log in

Nanostructuring of metals in fatigue loading

  • Published:
Russian Engineering Research Aims and scope

Abstract

Experimental and theoretical data regarding structural changes in the defect subsystem of materials are presented. It is shown that, with increase in the number of loading cycles, nanostructuring occurs in the defect subsystem: specifically, subboundaries are formed. An electron-dislocation mechanism is proposed for the plastic deformation of the surface layers of metals in fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koneva, N.A., Lychagin, D.V., Grishkina, L.I., and Kozlov, E.V., Defect Accumulation, Stored Elastic Energy, and Substructural Self-Organization, Fizicheskie aspekty prognozirovaniya razrusheniya i deformirovaniya geterogennykh materialov (Physical Aspects of the Prediction of Failure and Deformation in Heterogeneous Materials), Leningrad, 1987, pp. 20–35.

  2. Koneva, N.A., Teplyakova, L.A., Sosnin, O.V., et al., Dislocations Substructures and Their Transformation in Fatigue Stress: A Review, Izv. Vyssh. Uchebn. Zaved., Fiz., 2002, no. 3, pp. 87–98.

  3. Terent’ev, V.F., Ustalostnaya prochnost’ metallov i splavov (Fatigue Strength of Metals and Alloys), Moscow: Intermet Engineering, 2002.

    Google Scholar 

  4. Terent’ev, V.F., Structural Evolution in Metal Fatigue as a Result of the Self-Organization of Dissipative Structures, Sinergetika i ustalostnoe razrushenie metallov (Synergetics and Fatigue Failure of Metals), Moscow: Nauka, 1989, pp. 78–87.

    Google Scholar 

  5. Trefilov, V.I., Mil’man, Yu.V., and Firsov, S.A., Fizicheskie osnovy prochnosti tugoplavkikh metallov (Physical Principles of the Strength of Refractory Metals), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  6. Ivanova, V.S., Vvedenie v mezhdistsiplinarnoe materialovedenie (Introduction to Interdisciplinary Materials Science), Moscow: URSS, 2005.

    Google Scholar 

  7. Likhachev, V.A., Panin, V.E., et al., Kooperativnye deformatsionnye protsessy i lokalizatsiya deformatsii (Cooperative Deformation Processes and Localization of Deformation), Kiev: Naukova, Dumka, 1989.

    Google Scholar 

  8. Nicholis, G. and Prigogine, I., Self-Organization in Nonequilibrium Systems, New York: Wiley, 1977.

    Google Scholar 

  9. Haken, H., Information and Self-Organization: A Macroscopic Approach to Complex Systems, Berlin: Springer, 2006.

    MATH  Google Scholar 

  10. Haken, H., Advanced Synergetics: Instability Hierarchies in Self-Organizing Systems and Devices, New York: Springer, 1983.

    MATH  Google Scholar 

  11. Panin, V.E., Egorushkin, V.G., et al., Atomic-Vacancy State in Crystals, Izv. Vyssh. Uchebn. Zaved., Fiz., 1987, no. 1, pp. 5–16.

  12. Panin, V.V., Egorushkin, V.E., Makarov, P.V., et al., Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer Design of Materials), Novosibirsk: Nauka, 1995, vol. 1.

    Google Scholar 

  13. Kabaldin, Yu.G. and Murav’ev, S.N., Predicting the Fatigue Strength of Materials on the Basis of Artificial Intelligence, Metallurg. Mashinostr., 2004, no. 6, pp. 23–39.

  14. Smirnov, B.I., Dislokatsionnaya struktura i uprochnenie kristallov (Dislocation Structure and Strengthening of Crystals), Leningrad: Nauka, 1981.

    Google Scholar 

  15. Suzuki, T., Takeuchi, S., and Yashinaga, H., Dislocation Dynamics and Plasticity, Berlin: Springer, 1991.

    Google Scholar 

  16. Nizovtsev, V.V. and Krivatskii, V.A., Vortex Aspects of Geodynamics, Rotatsionnye protsessy v geologii i fizike (Rotation Processes in Geology and Physics), Milanovskii, E.E., Ed., Moscow: KomKniga, 2007, pp. 165–179.

    Google Scholar 

  17. Panin, V.E., Panin, A.V., Moiseenko, D.D., et al., Checkerboard Effect in the Stress and Strain Distribution at Interfaces in Loaded Solids, Dokl. Ross. Akad. Nauk, 2006, vol. 109, no. 5, pp. 606–610.

    Google Scholar 

  18. Grigorovich, V.K., Metallicheskaya svyaz’ i structura metallov (Metal Bond and Structure of Metals), Moscow: Nauka, 1988.

    Google Scholar 

  19. Kabaldin, Yu.G., Sinergetika. Informatsionnye modeli samo sborki nanosistem i nanostrukturirovaniya materialov pri vneshnem mekhanicheskom vozdeistvii (Synergetics: Informational Models of the Self-Assembly of Nanosystems and Nanostructuring of Materials with External Mechanical Perturbations), Komsomolsk-on-Amur, KnAGTU, 2007.

    Google Scholar 

  20. Schroedinger, E., What Is Life? The Physical Aspect of the Living Cell, New York: Macmillan, 1945.

    Google Scholar 

  21. Stepanov, N.F., Kvantovaya mekhanika i kvantovaya khimiya (Quantum Mechanics and Quantum Chemistry), Moscow: Mir, 2001.

    Google Scholar 

  22. Bouwmeester, D., Eckert, A., and Zeilinger, A., The Physics of Quantum Information, Berlin: Springer, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.G. Kabaldin, 2008, published in Vestnik Mashinostroeniya, 2008, No. 6, pp. 43–48.

About this article

Cite this article

Kabaldin, Y.G. Nanostructuring of metals in fatigue loading. Russ. Engin. Res. 28, 559–565 (2008). https://doi.org/10.3103/S1068798X08060105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X08060105

Keywords

Navigation