Skip to main content
Log in

Parallel solution of creep and heat-conduction problems by means of nonlinear generalized models

  • Published:
Russian Engineering Research Aims and scope

Abstract

A method of parallel solution of the steady creep and heat-conduction problems is proposed, on the basis of decomposition of the structure and approximate nonlinear models of the deformation of the structural components. An ANSYS program implements this method. Calculations confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogachev, K.Yu., Osnovy parallel’nogo programmirovaniya (Principles of Parallel Programming), Moscow: Binom, Laboratoriya Znanii, 2003.

    Google Scholar 

  2. Yagawa, G., Yoshoka, A., and Soneda, S., A Parallel Finite Element method with a Supercomputer Network, Comp. Struct., 1993, vol. 47, no. 3, pp. 407–418.

    Article  MATH  Google Scholar 

  3. Le Tallec, P., De Roeck, Y.H., and Vidrscu, M., Domain Decomposition Methods for Large Linearly Elliptic Three Dimensional Problems, J. Comp Appl. Math., 1991, vol. 34, pp. 93–117.

    Article  MATH  Google Scholar 

  4. Utku, S., Melosh, R., Islam, M., and Salama, M., On Nonlinear Finite Element Analysis in Single-, Multi-, Parallel Processors, Comp. Struct., 2007, vol. 15, no. 1, pp. 39–47.

    Article  Google Scholar 

  5. Le Tallec, P., Domain Decomposition Methods in Computational Mechanics, Comp. Mechan. Adv., 1994, no. 1(2), pp. 121–220.

    MATH  Google Scholar 

  6. Ast, M., Fischer, R., Labarta, J., and Manz, H., Run-Time Parallelization of Large FEM Analyses with PERMAS, Adv. Eng. Software, 1998, vol. 29(3–6), pp. 241–248.

    Article  Google Scholar 

  7. Chiang, K.N. and Fulton, R.E., Concepts and Implementation of Parallel Finite Element Analysis, Comp. Struct., 1990, vol. 36(6), pp. 1039–1045.

    Article  Google Scholar 

  8. Storaasli, O.O. and Bergan, P., Nonlinear Substructuring Method for Concurrent Processing Computers, AIA J., 1987, vol. 25, pp. 871–876.

    Article  MATH  Google Scholar 

  9. Kuenings, R., Parallel Finite Element Algorithms Applied to Computational Rheology, Comp. Chem. Eng., 1995, vol. 19, nos. 6/7, pp. 647–669.

    Article  Google Scholar 

  10. Klebanov, Ya.M. and Samarin, Yu.P., Power-Dissipation Surfaces in Force and Velocity Spaces during the Steady Creep of Nonuniform and Anisotropic Bodies, Izv. Ross. Akad. Nauk, Mekhan. Tverd. Tela, 1997, no. 6, pp. 121–125.

  11. Klebanov, Ya.M. and Davydov, A.N., Generalized-Model Method in Calculating the Steady Creep of Structures, Molodaya nauka: Tez. dokl. mezhdunar. nauch.-tekhn. konf. Ch. 1. Naberezhnye Chelny (Young Scientists: Proceedings of International Conference, vol. 1, Shipping Structures), 1996.

  12. Klebanov, I.M. and Davydov, A.N., A Parallel Computational Method in Steady Power-Law Creep, Int. J. Numerical Methods Eng., 2001, vol. 50, pp. 1825–1840.

    Article  MATH  Google Scholar 

  13. Klebanov, Ya.M. and Davydov, A.N., Parallel Solution of Nonlinear Problems with an Arbitrary Deformation Diagram, Vestn. SamGTU, Ser. Tekh. Nauki, 2000, issue 10, pp. 19–28.

  14. Termoprochnost’ detalei mashin (Thermal Strength of Machine Parts), Birger, I.A. and Shor, B.F., Eds., Moscow: Mashinostroenie, 1975.

    Google Scholar 

  15. Il’yushin, A.A., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  16. Ranteskii, B. and Savchuk, A., Temperature Effects in Plasticity. Part 1. Coupled Theory, Mekhanika, novoe v zarubezhnoi nauke. Vyp. 18. Problemy teorii plastichnosti i polzuchesti (Mechanics: New Developments Abroad, Issue 18, Plasticity and Creep Theory), Moscow: Mir, 1979, pp. 203–220.

    Google Scholar 

  17. Klebanov, Ya.M., Adeyanov, I.E., and Davydov, A.N., Model of Coupled Nonsteady-Creep, Heat-Conduction, and Damage Processes, Vestn. SamGTU, Ser. Fiz.-Mat. Nauki, 2003, issue 19, pp. 64–69.

  18. Muchnik, G.F. and Rubashov, I.B., Metody teorii teploobmena, Ch. 1. Teploprovodnost’ (Methods of Heat-Transfer Theory, vol. 1, Heat Conduction), Moscow: Vysshaya Shkola, 1970.

    Google Scholar 

  19. Kachanov, L.M., Teoriya polzuchesti (Creep Theory), Moscow: Fizmatgiz, 1960.

    Google Scholar 

  20. Boyle, J.T. and Spence, J., Stress Analysis for Creep, London: Butterworths, 1983.

    Google Scholar 

  21. Nazarov, G.I., Sushkin, V.V., and Dmitrievskaya, L.V., Konstruktsionnye plastmassy (Structural Plastics), Moscow: Mashinostroenie, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Ya.M. Klebanov, V.G. Fokin, 2008, published in Vestnik Mashinostroeniya, 2008, No. 6, pp. 21–25.

About this article

Cite this article

Klebanov, Y.M., Fokin, V.G. Parallel solution of creep and heat-conduction problems by means of nonlinear generalized models. Russ. Engin. Res. 28, 537–542 (2008). https://doi.org/10.3103/S1068798X08060051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X08060051

Keywords

Navigation