Skip to main content
Log in

Study of the Electrical Conductivity and EHD Flows of Weakly Concentrated Solution of Transformer Oil with an Electron-Acceptor Impurity (Iodine)

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical studies of the electrical conductivity of weakly concentrated solutions of liquid dielectrics (LDs) with a chemically active impurity and associated electrohydrodynamic (EHD) flows are presented. The studies are carried out on the basis of a multi-ion model of electrical conductivity, which makes it possible to adequately describe both the dissociation–recombination interactions of ions and the electrochemical injection of ions from the electrode surface. It is shown that the recombination processes in the volume of the LD lead to a slow disappearance of the space charge with a characteristic time of hours and days, which does not allow for significantly reducing the distribution of the space charge in the LD that reduces the intensity of EHD flows. Numerical calculations based on the obtained theoretical and experimental data on the electrical conductivity were carried out, and they confirmed the results of observations concerning the development and structure of EHD flows and current characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Bologa, M.K., Grosu, F.P., and Kozhukhar’, I.A., Elektrokonvektsiya i teploobmen (Electroconvection and Heat Transfer), Chisinau: Shtiintsa, 1977.

  2. Stishkov, Yu.K. and Ostapenko, A.A., Elektro-gidrodinamicheskie techeniya v zhidkikh dielektrikakh (Electro-Hydrodynamic Flows in Liquid Dielectrics), Leningrad: Leningr. Gos. Univ., 1989.

  3. Zhakin, A.I., Tarapov, I.E., and Fedonenko, A.I., Experimental studies of EHD instability and electroconvection in cylindrical capacitors, Magn. Gidrodin., 1981, no. 4, p. 139.

  4. Zhakin, A.I., Redox systems in electrohydrodynamics and calculation of electroconvective flows, Magn. Gidrodin., 1982, no. 2, p. 70.

  5. Fedonenko, A.I. and Zhakin, A.I., Experimental studies of electroconvective motion in transformer oil, Magn. Gidrodin., 1982, no. 3, p. 74.

  6. Daaboul, M., Louste, C., and Romat, H., Electrohydrodynamical characteristics of a dielectric liquid flow induced by charge injection, 2008 IEEE Int. Conf. on Dielectric Liquids, Chasseneuil, France, June 30–July 3, 2008.

  7. Zhakin, A.I., Kuz’ko, A.E., and Kharlamov, S.A., MicroEHD flow structures under constant electric fields, Surf. Eng. Appl. Electrochem., 2019, vol. 56, no. 3, p. 580.

    Article  Google Scholar 

  8. Zhakin, A.I., Electrohydrodynamics, Phys.-Usp., 2012, vol. 55, no. 5, p. 465.

    Article  Google Scholar 

  9. Zhakin, A.I., Near-electrode and transient processes in liquid dielectrics, Phys.-Usp., 2006, vol. 49, no. 3, p. 275.

    Article  Google Scholar 

  10. Stishkov, Yu.K. and Chirkov, V.A., Simulation of the electrohydrodynamic flow pattern in an asymmetric system of electrodes, Tech. Phys., 2005, vol. 50, no. 5, p. 576.

    Article  Google Scholar 

  11. Zhakin, A.I. and Kuzko, A.E., Electrohydrodynamic flows and heat transfer in the blade-plane electrode system, Fluid Dyn., 2013, vol. 48, no. 3, p. 310.

    Article  MathSciNet  Google Scholar 

  12. Kang Luo, Jian Wu, Hong-Liang Yi, Lin-Hua Liu, et al., Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection, Phys. Rev. Fluids, 2018, vol. 3, p. 053702.

    Article  Google Scholar 

  13. Walid Hassen, Hakan F. Oztop, Lioua Kolsi, Mohamed N. Borjini, et al., Analysis of the electro-thermo-convection induced by a strong unipolar injection between two concentric or eccentric cylinders, Numer. Heat Transf., Part A: Appl., 2017, vol. 71, p. 789. https://doi.org/10.1080/10407782.2017.1308725

    Article  Google Scholar 

  14. Kang Luo, Jian Wu, Hong-Liang Yi, and He-Ping Tan, Three-dimensional finite amplitude electroconvection in dielectric liquids, Phys. Fluids, 2018, vol. 30, p. 023602.

    Article  Google Scholar 

  15. Amiri, A., Kazi, S.N., and Shanbedi, M., Mohd Zubir, M.N., et al., Transformer oil based multi-walled carbon nanotube-hexylamine coolant with optimized electrical, thermal and rheological enhancements, RSC Adv., 2015, no. 130, p. 107222.

  16. Beheshti, A., Shanbedi, M., and Heris, S.Z., Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid, J. Therm. Anal. Calorim., 2014, vol. 118, no. 3, p. 1451.

    Article  Google Scholar 

  17. Ahn, S.H. and Kim, Y.K., Fabrication and experiment of planar micro ion drag pump, Sens. Actuators A, Phys., 1998, vol. 70, p. 1.

    Article  Google Scholar 

  18. Jeff, Darabi., Ohadi, M.M., and Devoe, D., An electrohydrodynamic polarization micropump for electronic cooling, J. Microelectromech. Syst., 2001, vol. 10, p. 98.

    Article  Google Scholar 

  19. Brian, D.I. and Garimella, S.V., Recent advances in microscale pumping technologies: A review and evaluation, Microfluid. Nanofluid., 2008, vol. 5, p. 145.

    Article  Google Scholar 

  20. Ichiro kano and Yoshio kano, Micro-electrhydrodynamic pump by dielectric fluid, JSME Int. J., Ser. B, Fluids Therm. Eng., 2005, vol. 48, no. 4, p. 770.

  21. Jeong, S.I. and Seyed-Yagoobi, J., Innovative electrode designs for electrohydrodynamic conduction pumping, 2002 IEEE Industry Appl. Conf., 37th IAS Annual Meeting, 2002.

  22. Ashjaee, M. and Mahmoudi, S.R., Experimental study of electrohydrodynamic pumping through conduction phenomenon using various fluids, CEIDP’05. 2005 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, 2005.

  23. Ashjaee, M. and Mahmoudi, S.R., Experimental investigation of electrohydrodynamic pumping feasibility in microgravity conditions through conduction phenomenon, IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2006, p. 166.

  24. Guler, M., Pinar Beyazkilic, and Caglar Elbuken, A versatile plug microvalve for microfluidic applications, Sens. Actuat. A: Phys., 2017, vol. 265, p. 224.

    Article  Google Scholar 

  25. Kozhevnikov, I.V., Grosu, F.P., Bologa, M.K., Characteristics of multistage electrohydrodynamic converters, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 342.

    Article  Google Scholar 

  26. Electrohydrodynamics, Castellanos, A., Ed., vol. 380 of CISM International Centre for Mechanical Sciences, Wien: Springer-Verlag, 1998.

    Google Scholar 

  27. Zhakin, A.I., Ionic conductivity and complexation in liquid dielectrics, Phys.-Usp., 2003, vol. 46, no. 1, p. 45.

    Article  Google Scholar 

  28. Zhakin, A.I., Kuzэko, A.E., High voltage degradation of electrodes caused by electrochemical injection in liquid dielectrics, Surf. Eng. Appl. Electrochem., 2022, vol. 58, no. 6, p. 625.

    Article  Google Scholar 

  29. Zhakin, A.I. and Fedonenko, A.I., Experimental study of the influence of impurities on the conductivity of a non-polar liquid dielectric, Elektron. Obrab. Mater., 1983, no. 4, p. 41.

  30. Zhakin, A.I., Tarapov, I.E., and Fedonenko, A.I., Experimental study of the conductivity mechanism of polar liquid dielectrics, Elektron. Obrab. Mater., 1983, no. 5, p. 37.

  31. Izmailov, N.A., Elektrokhimiya rastvorov (Electrochemistry of Solutions), Moscow: Khimiya, 1966.

  32. Fialkov, Yu.Ya., Zhitomirskii, A.N., and Tarasenko, Yu.A., Fizicheskaya khimiya nevodnykh rastvorov (Physical Chemistry of Non-Aqueous Solutions), Leningrad: Khimiya, 1973.

  33. Tomilov, A.G., Mairanovskii, S.G., Fioshin, M.Ya., and Smirnov, V.A., Elektrokhimiya organicheskikh soedinenii (Electrochemistry of Organic Compounds), Leningrad: Khimiya, 1968.

  34. Fialkov, Yu.Ya., Rastvoritel’ kak sredstvo upravleniya khimicheskim protsessom (Solvent as a Means of Controlling a Chemical Process), Leningrad: Khimiya, 1990.

  35. Onsager, L., Deviation from Ohm’s law in weak electrolytes, J. Chem. Phys., 1934, vol. 2, p. 599.

    Article  Google Scholar 

  36. Zhakin, A.I., Aggregation kinetics in nonpolar liquid dielectrics, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 4, p. 354.

    Article  Google Scholar 

  37. Adamchevskii, I., Elektricheskaya provodimost’ zhidkik-h dielektrikov (Electrical Conductivity of Liquid Dielectrics), Leningrad: Energiya, 1972.

  38. Davies, D.F., Waves, Atoms and Solids, London: Longman, 1978.

    Google Scholar 

  39. Lipshtein, R.A. and Shakhnovich, M.I., Transformatornoe maslo (Transformer Oil), Moscow: Energoatomizdat, 1983.

  40. Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Field emission and explosive electron emission processes in vacuum discharges, Sov. Phys. Usp., 1983, vol. 26, p. 138.

    Article  Google Scholar 

  41. Mesyats, G.A., Ecton or electron avalanche from metal, Phys.-Usp., 1995, vol. 38, p. 567.

    Article  Google Scholar 

  42. Kuznetsov, V.V., Fizicheskaya i kolloidnaya khimiya (Physical and Colloidal Chemistry), Moscow: Vysshaya shkola, 1968.

  43. Vol’kenshtein, F.F., Elektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii (Electronic Processes on the Surface of Semiconductors during Chemisorption), Moscow: Nauka, 1987.

  44. Morrison, S., The Chemical Physics of Surfaces, New York: Springer, 1977.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, no. 0851-2020-0035.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Zhakin or A. E. Kuz’ko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Myshkina

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhakin, A.I., Kuz’ko, A.E. Study of the Electrical Conductivity and EHD Flows of Weakly Concentrated Solution of Transformer Oil with an Electron-Acceptor Impurity (Iodine). Surf. Engin. Appl.Electrochem. 59, 803–815 (2023). https://doi.org/10.3103/S1068375523060200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523060200

Keywords:

Navigation