Skip to main content
Log in

Development and Creation of a New Class of Graded-Gap Structures Based on Silicon with the Participation of Zn and Se Atoms

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility of the formation of structures such as compounds of elements between chalcogenides and the transition group of metals in the crystal lattice of silicon is studied. This is an urgent problem in electronics. It is shown that, under certain technological conditions, a sufficient concentration of unit cells is formed, which leads to a change in the band structure of silicon itself; i.e., a micro- and nanoscale inclusion in silicon with a direct-gap structure is obtained. The possibilities of creating a fundamentally new class of photocells with an extended spectral sensitivity region, as well as light-emitting devices, light-emitting diodes, and lasers based on them, are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Saidov, A.S, Usmonov, Sh.N., Kalanov, M.U., and Amonov, K.A., Growth of (Si2)1 – x(ZnSe)x (0 ≤ x ≤ 0.01) solid solution films and investigation of their structural and photoelectric properties, Al’tern. Energ. Ekol., 2013, no. 15 (137), p. 41.

  2. Bakhadyrkhanov, M.K. and Abdurakhmanov, B.A., Physical and technological foundations for the formation of clusters of impurity atoms in silicon, Dokl. Akad. Nauk Resp. Uzb., 2013, no. 3, p. 29.

  3. Saidov, A.S., Razzakov, A., Risaeva, V., and Koshchanov, E., Liquid-phase epitaxy of solid solutions (Ge2)1 – x(ZnSe)x , Miner. Chem. Phys., 2001, vol. 68, p. 1.

    Google Scholar 

  4. Saidov, A.S., Usmonov, Sh.N., Kholikov, K.T., and Saparov, D., Synthesis and characterization of (Si2)1 − x − y(Ge2)x(GaAs)y continuous solid solutions, Tech. Phys. Lett., 2007, vol. 33, p. 701.

    Article  Google Scholar 

  5. Usmonov, Sh.N., Saidov, A.S., Leyderman, A.Yu., Saparov, D., et al., Possibility of obtaining the (GaSb)1 − x(Si2)x films on silicon substrates by the method of liquid-phase epitaxy, Semiconductors, 2009, vol. 43, no. 8, p. 1092.

    Article  Google Scholar 

  6. Saidov, M.S., Silicon solid solutions and the possibilities of their application in cascade solar cells, Geliotekhnika, 1997, nos. 5–6, p. 57.

  7. Coleman, P.D., Freeman. J., Morkoҫ, H., Hess, K., et al., Demonstration of a new oscillator based on real space transfer in heterojuctions, Appl. Phys. Lett., 1982, vol. 40, no. 6, p. 493.

    Article  Google Scholar 

  8. Saidov, A.S., Koshchanov, E.A., and Razzakov, A.Sh., The possibility of improving the structural perfection of the new heterojunctions GaAs–(Ge2)1–x(ZnSe)x, Ge–(Ge2)1 – x(ZnSe)x, GaP–(Ge2)1 – x(ZnSe)x, and Si–(Ge2)1 – x(ZnSe)x , Tech. Phys. Lett., 1998, vol. 24, no. 2, p. 47.

    Article  Google Scholar 

  9. Tursunov, O.B., Fundamental management (E g, µ band structure) silicon is a new direction in the field of semiconductor materials, Eur. Sci. Rev., 2022, nos. 3–4, p. 37.

  10. Mikhailov, A.I. and Mitin, A.V., Experimental investigation of current oscillations spectrum in long high-resistivity planar-epitaxial gallium arsenide structures under light action, Fizika Volnovykh Protsessov i Radiotekhnicheskie Sistemy, 2011, vol. 14, no. 4, p. 87.

    Google Scholar 

  11. Gavrilenko, V.I., Grekhov, A.M., Korbutyak, D.V., and Litovchenko, V.G., Opticheskie svoistva poluprovodnikov: spravochnik (Optical Properties of Semiconductors: A Handbook), Kiev: Naukova dumka, 1987.

  12. Morozova, N.K., Kuznetsov, V.A., Ryzhikov, V.D., Galstyan, V.G., et al., Selenid tsinka. Poluchenie i opticheskie svoistva (Zinc Selenide. Preparation and Optical Properties), Moscow: Nauka, 1992.

  13. Korepanov, V.I, Impul’snyi lyuminestsentnyi analiz (Pulsed Luminescent Analysis), Tomsk: Izd. Tomsk. Politekh. Univ., 2008.

  14. Morozova, N.K. and Mideros, D.A., Effect of Te on the self-activated emission of ZnSe, Semiconductors, 2008, vol. 42, p. 1499.

    Article  Google Scholar 

  15. Morozova, N.K., Mideros, D.A., Gavrishchuk, E.M., and Galstyan, V.G., Role of background O and Cu impurities in the optics of ZnSe crystals in the context of the band anticrossing model, Semiconductors, 2008, vol. 42, p. 131.

    Article  Google Scholar 

  16. Fedorov, V.V., Mirov, S.B., Gallian, A., Badikov, D.V., et al., 3.77–5.05-μm Tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures, IEEE J. Quant. Electron., 2006, vol. 42, no. 9, p. 907.

    Article  Google Scholar 

  17. Sorokina, I.T., Sorokin, E., Mirov, S.B., Fedorov, V.V., et al., Opt. Lett., 2002, vol. 27, p. 1040.

    Article  Google Scholar 

  18. Bakhadyrkhanov, M.K., Isamov, S.B., Iliev, Kh.M., Tachilin, S.A., et al., Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures, Appl. Sol. Energy, 2014, vol. 50, p. 61.

    Article  Google Scholar 

  19. Bakhadyrkhanov, M.K., Zikrillaev, N.F., Isamov, S.B., and Koveshnikov, S.V., Fotoelektricheskie yavleniya v kremnii s mnogozaryadnymi nanoklasterami (Photovoltaic Phenomena in Silicon with Multiply Charged Nanoclusters), LAP LAMBERT Academic Publishing, 2019.

  20. Bakhadyrkhanov, M.K., Zikrillaev, N.F., and Ayupov, K.S., Optimal doping conditions for obtaining silicon with intrinsic conductivity, Pribory. Tekhnologiya, Oborudovanie i Novye Materialy, 2018, no. 11 (221), p. 40.

  21. Bakhadyrkhanov M. K., Isamov S.B., IR photodetectors operating under background illumination, Tech. Phys., 2016, vol. 61, p. 458.

    Article  Google Scholar 

  22. Bakhadyrkhanov, M.K., Iliev, Kh.M., Mavlonov, G.Kh., Mamadzhanov Kh., et al., Features of electrical and photoelectric properties of silicon with multicharged clusters of impurity atoms, Tezisy dokladov 2-i mezhd. nauchn. konf. “Fizika i fizicheskoe obrazovanie” (Abstracts of the 2nd Int. Sci. Conf. “Physics and Physical Education”), Bishkek, 2008, p. 33.

  23. Kazanskii, A.G., Mell, H., Terukov, E.I., and Forsh, P.A., Effect of temperature on photoconductivity and its decay in microcrystalline silicon, Semiconductors, 2001, vol. 35, no. 8, p. 953.

    Article  Google Scholar 

  24. Trumbore, F.A., Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J., 1960, vol. 39, p. 205.

    Article  Google Scholar 

  25. Borisenko, V.E. and Yudin, S.G., Steady-state solubility of substitutional impurities in silicon, Phys. Status Solidi A, 1987, vol. 101, p. 123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Zikrillaev, O. B. Tursunov or G. A. Kushiev.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikrillaev, N.F., Tursunov, O.B. & Kushiev, G.A. Development and Creation of a New Class of Graded-Gap Structures Based on Silicon with the Participation of Zn and Se Atoms. Surf. Engin. Appl.Electrochem. 59, 670–673 (2023). https://doi.org/10.3103/S1068375523050198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523050198

Keywords:

Navigation