Skip to main content
Log in

Effect of a Constant Magnetic Field on Electrodeposition of CoMo, CoRe, and CoMoRe Alloys from a Citrate Electrolyte

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition of CoMo and CoRe binary alloys and CoMoRe ternary alloys from a citrate electrolyte (pH 3.5) was studied depending on the presence of a magnetostatic field and the direction of the magnetic induction vector relative to the surface of the working electrode. It was shown that magnetoelectrolysis significantly increases the current efficiency of all investigated alloys, especially the CoMoRe ternary alloy. The forces acting in the liquid and on bubbles of hydrogen evolved during a reaction in a magnetostatic field were modeled. It was demonstrated that the generation of convective flows by magnetohydrodynamic effect is neither single, nor determining factor. In the case of intense gas evolution, the force balance varies depending on the size of the bubbles: the conduction force and the buoyancy force dominate for large bubbles (about 100 μm), whereas the magnetic gradient force is predominant for small bubbles (less than 1 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Zieliński, M., Effects of constant magnetic field on the electrodeposition reactions and cobalt–tungsten alloy structure, Mater. Chem. Phys., 2013, vol. 141, p. 370.

    Article  Google Scholar 

  2. Zieliński, M., Miękoś, E., Szczukocki, D., Dałkowski, R., et al., Effects of constant magnetic field on electro-deposition of Co–W–Cu alloy, Int. J. Electrochem. Sci., 2015, vol. 10, p. 4146.

    Article  Google Scholar 

  3. Zieliński, M., Influence of constant magnetic field on the electrodeposition of cobalt and cobalt alloys, Int. J. Electrochem. Sci., 2013, vol. 8, p. 12192.

    Article  Google Scholar 

  4. Zieliński, M., Positive and negative aspects of electrode reactions of hydrogen evolution and the influence of a constant magnetic field, J. Adv. Chem. Eng., 2014, vol. 4. https://doi.org/10.4172/2090-4568.1000106

  5. Koza, J.A., Mühlenhoff, S., Zabiński, P., Nikrityuk, P.A., et al., Hydrogen evolution under the influence of a magnetic field, Electrochim. Acta, 2011, vol. 56, p. 2665.

    Article  Google Scholar 

  6. Baczyzmalski, D., Karnbach, F., Yang, X., Mutschke, G., et al., On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field, J. Electrochem. Soc., 2016, vol. 163, no. 9, p. 248.

    Article  Google Scholar 

  7. Koza, J.A., Mühlenhoff, S., Uhlemann, M., Eckert, K., et al., Desorption of hydrogen from an electrode surface under influence of an external magnetic field—in-situ microscopic observations, Electrochem. Commun., 2009, vol. 11, p. 425.

    Article  Google Scholar 

  8. Yapontseva, Yu.S., Kublanovsky, V.S., and Vyshnevskyi, O.A., Electrodeposition of CoMoRe alloys from a citrate electrolyte, J. Alloys Compd., 2018, vol. 766, p. 894.

    Article  Google Scholar 

  9. Belevskii, S.S., Danilchuk, V.V., Gotelyak, A.V., Lelis, M., et al., Electrodeposition of Fe–W alloys from citrate bath: Impact of anode material, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 1, p. 1.

    Article  Google Scholar 

  10. Myrzak, V., Gotelyak, A.V., and Dikusar, A.I., Size effects in the surface properties of electroplated alloys between iron group metals and tungsten, Surf. Eng. Appl. Electrochem., 2021, vol. 57, no. 4, p. 409.

    Article  Google Scholar 

  11. Gotelyak, A.V., Silkin, S.A., Yakhova, E.A., and Dikusar, A.I., Effect of pH and volume current density on deposition rate and microhardness of Co–W coatings electrodeposited from concentrated boron‒gluconate electrolyte, Russ. J. Appl. Chem., 2017, vol. 90, no. 4, p. 541.

    Article  Google Scholar 

  12. Yapontseva, Yu., Kublanovsky, V., Corrosive and catalytic properties of electrolytic coatings of Co–Mo–Re alloys, Mater. Sci., 2019, vol. 2, p. 213.

    Article  Google Scholar 

  13. Yapontseva, Yu.S., Maltseva, T.V., Kublanovsky, V.S., Vyshnevskyi, O.A., et al., Electrodeposition and properties of Co–Re alloys, Int. J. Refract. Met. Hard Mater., 2021, vol. 96, 105469.

    Article  Google Scholar 

  14. Eliaz, N. and Gileadi, E., Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals, in Modern Aspects of Electrochemistry, Vayenas, C., , Eds., Springer: New York, 2008, p. 191.

    Google Scholar 

  15. Cesiulis, H., Tsyntsaru, N., Budreika, A., and Skridaila, N., Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions, Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 5, p. 406.

    Article  Google Scholar 

  16. Coey, J.M.D., Magnetoelectrochemistry, Europhys. News, 2003, vol. 34, p. 246.

    Article  Google Scholar 

  17. Zaichenko, V.N. and Slobodyanyuk, I.A., Elektron. Obrab. Mater., 2017, vol. 53, no. 2, p. 65.

    Google Scholar 

  18. Kublanovsky, V.S. and Yapontseva, Y.S., Electrocatalytic properties of Co–Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte, Electrocatalysis, 2014, vol. 5, p. 372.

    Article  Google Scholar 

  19. Yapontseva, Y.S., Maltseva, T.V., Kublanovsky, V.S., and Vyshnevskyi, O.A., Electrodeposition and properties of CoWRe alloys, J. Mater. Res., 2022, vol. 37, p. 2216. https://doi.org/10.1557/s43578-022-00497-2

    Article  Google Scholar 

  20. Kublanovsky, V.S., Yapontseva, Y.S., Troshchenkov, Y.N. et al., Corrosion and magnetic properties of electrolytic Co–Mo alloys, Russ. J. Appl. Chem., 2010, vol. 83, p. 440.

    Article  Google Scholar 

  21. Tsyntsaru, N., Cesiulis, H., Pellice, E., Celis, J.-P., et al., Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies, Electrochim. Acta, 2013, vol. 104, p. 94.

    Article  Google Scholar 

  22. Gómez, E., Pellicer, E., Duch, M., Esteve, J., et al., Molybdenum alloy electrodeposits for magnetic actuation, Electrochim. Acta, 2006, vol. 51, p. 3214.

    Article  Google Scholar 

  23. Yapontseva, Yu.S., Maltseva, T.V., and Kublanovsky, V.S., Electrocatalysis of the hydrogen evolution reaction on CoRe, CoWRe superalloys deposited from citrate electrolyte, Ukr. Chem. J., 2020, vol. 86, no. 9, p. 28. https://doi.org/10.33609/2708-129X.86.9.2020.28-38

    Article  Google Scholar 

  24. García-Torres, J., Gómez, E., and Vallés, E., Modulation of magnetic and structural properties of cobalt thin films by means of electrodeposition, J. Appl. Electrochem., 2009, vol. 39, p. 233.

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the Targeted Scientific Research Program of the National Academy of Sciences of Ukraine, “Promising Fundamental Research and Innovative Development of Nanomaterials and Nanotechnologies for the Needs of Industry, Healthcare, and Agriculture” (project no. 28/22-N, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kublanovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapontseva, Y.S., Zaichenko, V.N., Kublanovsky, V.S. et al. Effect of a Constant Magnetic Field on Electrodeposition of CoMo, CoRe, and CoMoRe Alloys from a Citrate Electrolyte. Surf. Engin. Appl.Electrochem. 59, 412–421 (2023). https://doi.org/10.3103/S106837552304018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837552304018X

Keywords:

Navigation