Skip to main content
Log in

On the Interaction of Azimuthal Modes of Capillary Waves on the Surface of an Elliptic Jet in a Homogeneous Electrostatic Field

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A study was made of the interaction of the first azimuthal modes of capillary waves on the surface of an elliptic jet in a homogeneous electrostatic field that is perpendicular to the axis of the jet. The interaction is nonlinear in the product of two independent small parameters. The interaction arises due to the ellipticity of the perpendicular cross-section of the jet and involves three azimuthal modes: either even or odd. The stability of the jet in the perpendicular homogeneous electrostatic field is lower than that of a jet in a radial electrostatic field. The characteristic destabilization time decreases with increasing initial amplitudes of the interacting modes and intensity of the external electrostatic field, and also depends on the wavenumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Entov, V.M. and Yarin, A.L., Dynamics of free jets and films of viscous and rheologically complex liquids, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1984, vol. 17, p. 112.

    Google Scholar 

  2. Ametistov, E.V., Blazhenkov, V.V., Gorodov, A.K., et al., Monodispergirovanie veshchestva: printsipy i primenenie (Substance Monodispersion: Principles and Applications), Moscow: Energoatomizdat, 1991.

  3. Eggers, J., Physics of liquid jet, Rev. Mod. Phys., 1997, vol. 69, no. 3, p. 865.

    Article  MATH  Google Scholar 

  4. Gamero-Castano, M. and Hruby, V., Electric measurements of charged sprays emitted by cone-jets, J. Fluid Mech., 2002, vol. 459, p. 245.

    Article  MATH  Google Scholar 

  5. Amini, Gh., Lv, Yu, Dolatabadi, A., and Ihme, M., Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis, Phys. Fluids, 2014, vol. 26, p. 114105.

    Article  Google Scholar 

  6. Strutt, J.W., The Theory of Sound, Cambridge: Cambridge Univ. Press, 1877.

    Google Scholar 

  7. Grigor’ev, A.I. and Shiryaeva, S.O., Stability of capillary waves of arbitrary symmetry on a jet in a perpendicular uniform electrostatic field, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 2021, no. 2, p. 29.

  8. Frenkel’, Ya.I., Tonks’ theories about the discontinuity of the surface of a liquid by a constant electric field in vacuum, Zh. Eksp. Tekh. Fiz., 1936, vol. 6, no. 4, p. 348.

    Google Scholar 

  9. Taylor, G.I., Disintegration of water drops in an electric field, Proc. Roy. Soc. A, 1964, vol. 280, p. 383.

    MATH  Google Scholar 

  10. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1992.

  11. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  12. Landau, L.D. and Lifshits, E.M., Teoriya polya (Field Theory), Moscow: Nauka, 1973.

  13. Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973.

    MATH  Google Scholar 

  14. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physical and Chemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

  15. O’Konski, C.T. and Harris, F.E., Electric free energy and the deformation of droplets in electrically conducting system field, J. Phys. Chem., 1957, vol. 61, p. 1172.

    Article  Google Scholar 

  16. Spravochnik po spetsial’nym funktsiyam (Special Functions Reference Book), Moscow: Nauka, 1979.

  17. Shiryaeva, S.O., Petrushov, N.A., and Grigor’ev, A.I., On the interaction of modes of a nonspherical charged drop in an external electrostatic field, linear in the dimensionless amplitude of oscillations, Zh. Tekh. Fiz., 2016, vol. 86, no. 1, p. 37.

    Google Scholar 

  18. Grigor’ev, A.I., Electrostatic instability of a highly charged jet of an electrically conductive liquid, Zh. Tekh. Fiz., 2009, vol. 79, no. 4, p. 36.

    Google Scholar 

  19. Cloupeau, M. and Prunet-Foch, B., Electrostatic spraying of liquids: Main functioning modes, J. Electrostatics, 1990, vol. 25, p. 165.

    Article  Google Scholar 

  20. Cloupeau, M. and Prunet-Foch, B., Electrohydrodynamic spraying functioning modes: A critical review, J. Aerosol Sci., 1994, vol. 25, no. 6, p. 1021.

    Article  Google Scholar 

  21. Jaworek, A. and Krupa, A., Classification of the modes of EHD spraying, J. Aerosol Sci., 1999, vol. 30, no. 7, p. 873.

    Article  Google Scholar 

  22. Grigor’ev, A.I. and Shiryaeva, S.O., Electrostatic instability of high azimuthal modes of a charged jet, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 2021, no. 3, p. 48.

  23. Kim, O.V. and Dunn, P.F., Control production by in-flight electrospraying, Langmuir, 2010, vol. 26, p. 15807.

    Article  Google Scholar 

  24. Brekhovskikh, L.M. and Goncharov, V.V., Vvedenie v mekhaniku sploshnykh sred (v prilozhenii k teorii voln) (Introduction to Continuum Mechanics (As Applied to Wave Theory)), Moscow: Nauka, 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. O. Shiryaeva or A. I. Grigor’ev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, S.O., Grigor’ev, A.I. On the Interaction of Azimuthal Modes of Capillary Waves on the Surface of an Elliptic Jet in a Homogeneous Electrostatic Field. Surf. Engin. Appl.Electrochem. 59, 443–451 (2023). https://doi.org/10.3103/S1068375523040130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523040130

Keywords:

Navigation