Skip to main content
Log in

An Ionic Boundary Layer near the Lithium Niobate Surface in the Proton Exchange Process

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The paper presents a theoretical study of the behavior of an ionic boundary layer that occurs in the process of a steady proton exchange in a benzoic acid melt contacting with the surface of a lithium niobate crystal. The penetration of protons into a crystal promotes the injection of oppositely charged ions (lithium and benzoate) from the surface of lithium niobate in the surrounding acid. The transfer of the reaction products and their interaction in benzoic acid is studied numerically. The proposed mathematical model includes the effect of recombination in the volume so that the ions with different charge signs approach each other and form a neutral lithium benzoate. The results of the numerical simulations demonstrate that there are exponential-like concentration profiles of two types of ions, and a non-uniform electric field and pressure distributions develop in the boundary layer under steady-state conditions. In this process, the total charge of the system remains zero. It is shown how the concentration, recombination, and activity of lithium and benzoate ions and the diffusion coefficients affect the profile shapes and the process intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Jackel, J.L., Rice, C.E., and Veselka, J.J., Proton exchange for high-index waveguides in LiNbO3, Appl. Phys. Lett., 1982, vol. 41, p. 607. https://doi.org/10.1063/1.93615

    Article  Google Scholar 

  2. Jackel, J.L., Proton exchange: Past, present, and future, Proc. SPIE, Integr. Opt. Circuits, 1991, vol. 1583, p. 54. https://doi.org/10.1117/12.50875

  3. Blistanov, A.A., Kristally kvantovoi i nelineinoi optiki (Crystals for Quantum and Nonlinear Optics), Moscow: MISIS, 2000.

  4. Pun, E.Y.B., Kong, T.C., Chung, P.S., and Chan, H.P., Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid, Electr. Lett., 1990, vol. 26, no. 2, p. 81. https://doi.org/10.1049/el:19900054

    Article  Google Scholar 

  5. Goto, N. and Yip, G.L., Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid, Appl. Opt., 1989, vol. 28, no. 1, p. 60. https://doi.org/10.1364/AO.28.000060

    Article  Google Scholar 

  6. De Micheli, M., Botineau, J., Neveu, S., Sibillot, P., et al., Independent control of index and profiles in proton-exchanged lithium niobate guides, Opt. Lett., 1983, vol. 8, no. 2, p. 114. https://doi.org/10.1364/OL.8.000114

    Article  Google Scholar 

  7. Petukhov, I.V., Kichigin, V.I., Skachkov, A.P., Mushinsky, S.S., et al., Microindentation of proton exchange layers on X cut of lithium niobate crystals, Mater. Chem. Phys., 2012, vol. 135, p. 493. https://doi.org/10.1016/j.matchemphys.2012.05.013

    Article  Google Scholar 

  8. Korkishko, Yu.N. and Fedorov, V.A., Structural phase diagram of HxLi1 – xNbO3 waveguides: The correlation between optical and structural properties, IEEE J. Select. Top. Quant. Electron., 1996, vol. 2, p. 2. https://doi.org/10.1109/2944.577359

    Article  Google Scholar 

  9. Rice, C.E., The structure and properties of Li1 – xHxNbO3, J. Solid State Chem., 1986, vol. 64, p. 2. https://doi.org/10.1016/0022-4596(86)90138-6

    Article  Google Scholar 

  10. Shevtsov, D.I., Azanova, I.S., Taisin, I.F., and Volyntsev, A.B., Metastable phases in proton-exchanged waveguides on an X cut of lithium niobate, Phys. Solid State, 2006, vol. 48, no. 6, p. 1059. https://doi.org/10.1134/S1063783406060138

    Article  Google Scholar 

  11. Kichigin, V.I., Petukhov, I.V., Mushinsky, S.S., Oborin, V.A., et al., Structure and properties of proton exchange waveguides on Z cut of lithium niobate crystal fabricated in molten benzoic acid with the addition of lithium benzoate, Int. Conf. Semin. Spec. Micro/Nanotechnol. Electron. Devices, Altai, Russia, July 2–6, 2012, p. 238. https://doi.org/10.1109/EDM.2012.6310225

  12. Mushinsky, S.S., Minkin, A.M., Petukhov, I.V., Kichigin, V.I., et al., Water effect on proton exchange of X-cut lithium niobate in the melt of benzoic acid, Ferroelectrics, 2015, vol. 476, no. 1, p. 84. https://doi.org/10.1080/00150193.2015.998530

    Article  Google Scholar 

  13. Vohra, S.T., Mickelson, A.R., and Asher, S.E., Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides, J. Appl. Phys., 1989, vol. 66, p. 5161. https://doi.org/10.1063/1.343751

    Article  Google Scholar 

  14. Demin, V.A., Petukhov, M.I., Ponomarev, R.S., and Topova, A.V., On a role of anisotropy and nonlinear diffusive effects during the construction of waveguides in the lithium niobate, Bull. Perm Univ., Phys., 2021, vol. 1, p. 49. https://doi.org/10.17072/1994-3598-2021-1-49-58

    Article  Google Scholar 

  15. Kichigin, V.I., Petukhov, I.V., Mushinsky, S.S., Karmanov, V.I., et al., Electrical conductivity and IR spectra of molten benzoic acid, Russ. J. Appl. Chem., 2011, vol. 54, no. 12, p. 2060. https://doi.org/10.1134/S1070427211120081

    Article  Google Scholar 

  16. Ganshin, V.A. and Korkishko, Yu.N., Proton exchange in lithium niobate and lithium tantalate single crystals: Regularities and specific features, Phys. Stat. Sol., 1990, vol. 119, no. 2, p. 11. https://doi.org/10.1002/pssa.2211190102

    Article  Google Scholar 

  17. Sun, T. and Teja, A.S., Density, viscosity, and thermal conductivity of aqueous benzoic acid mixtures between 375 K and 465 K, J. Chem. Eng. Data, 2004, vol. 29, p. 1843. https://doi.org/10.1021/je0497247

    Article  Google Scholar 

  18. Mushinsky, S.S., Kichigin V.I., Petukhov, I.V., Minkin, A.M., et al., Structure and properties of proton exchanged layers in +Z cut and –Z cut lithium niobate, Ferroelectrics, 2013, vol. 443, p. 20. https://doi.org/10.1080/00150193.2013.773856

    Article  Google Scholar 

  19. Petukhov, I.V., Mushinsky, S.S., Permyakova, M.A., Kichigin, V.I., et al., Peculiarities of structural phase transformations in proton exchanged layers of Z-cut lithium niobate crystal during annealing, Condens. Matter Interph., 2018, vol. 20, no. 3, p. 443. https://doi.org/10.17308/kcmf.2018.20/581

    Article  Google Scholar 

  20. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Oxford: Butterworth-Heinemann, 1987, vol. 6.

    Google Scholar 

  21. Zhakin, A.I., Near-electrode and transient processes in liquid dielectrics, Phys.-Usp., 2006, vol. 49, no. 3, p. 275. https://doi.org/10.3367/UFNr.0176.200603d.0289

    Article  Google Scholar 

  22. Zhakin, A.I., Electrohydrodynamics, Phys.-Usp., 2012, vol. 55, no. 5, p. 465. https://doi.org/10.3367/UFNr.0182.201205b.0495

    Article  Google Scholar 

  23. Pontiga, F. and Castellanos, A., Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient, Phys. Fluids, 1994, vol. 6, p. 1684. https://doi.org/10.1063/1.868231

    Article  MATH  Google Scholar 

  24. Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Keter Publishing House, 1976.

    Google Scholar 

  25. Nield, D.A., The thermohaline Rayleigh–Jeffreys problem, J. Fluid Mech., 1967, vol. 29, p. 545. https://doi.org/10.1017/S0022112067001028

    Article  Google Scholar 

  26. Mordvinov, A.N. and Smorodin, B.L., Electro-convection under injection from cathode and heating from above, JETP, 2012, vol. 114, no. 5, p. 870. https://doi.org/10.1134/S1063776112030181

    Article  Google Scholar 

  27. Smorodin, B.L. and Taraut, A.V., Dynamics of electroconvective wave flows in a modulated electric field, JETP, 2014, vol. 118, no. 1, p. 158. https://doi.org/10.1134/S1063776114010178

    Article  Google Scholar 

  28. Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, New York: Springer-Verlag, 1980.

    Book  MATH  Google Scholar 

  29. Suli, E. and Mayers, D., An Introduction to Numerical Analysis, Cambridge: Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. I.V. Petukhov for productive discussions.

Funding

The research was funded under the state assignment, contract no. 121101300016-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Demin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, V.A., Petukhov, M.I. & Ponomarev, R.S. An Ionic Boundary Layer near the Lithium Niobate Surface in the Proton Exchange Process. Surf. Engin. Appl.Electrochem. 59, 321–328 (2023). https://doi.org/10.3103/S1068375523030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523030055

Keywords:

Navigation