Skip to main content
Log in

Electrochemical Energy Storage Capacity of Surface Engineered Renewable Carbon Derived from Industrial Tea Waste by HNO3 and K2CO3

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Direct electrical energy storage by supercapacitors is the leading energy storage technology. The performance of supercapacitors depends mainly upon the electrode material constituents. Carbon is the preferred energy storage material for its some main properties such as a large surface area, electrical conductivity, porosity, thermal stability, etc. Sustainable, green, renewable, low-cost and environmentally friendly carbon energy storage materials can be obtained from biomass. A larger surface area and tunable micro-porosity, which are the most important advantages, could be achieved by chemical activation of K2CO3 and HNO3. In this work, the effect of K2CO3 and HNO3 on the porosity and the electrochemical energy storage capacity of carbon derived from biomass made from the industrial tea waste were evaluated. A carbon material with a high performance of energy storage exhibiting 460 F g–1, with a surface area of 1261 m2 g–1, could be developed by activation of K2CO3 in the 1 : 1 optimum ratio (w/w). The HNO3 treatment also increased the capacitance but to a very low degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Berrueta, A., Ursúa, A., San Martín, I., Eftekhari, A., et al., Supercapacitors: Electrical characteristics, modeling, applications, and future trends, IEEE Access, 2019, vol. 7, p. 50869. https://doi.org/10.1109/ACCESS.2019.2908558

    Article  Google Scholar 

  2. Miller, E.E., Hua, Y., and Tezel, F.H., Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage, 2018, vol. 20, p. 30. https://doi.org/10.1016/j.est.2018.08.009

    Article  Google Scholar 

  3. Dubey, R. and Guruviah, V., Review of carbon-based electrode materials for supercapacitor energy storage, Ionics, 2019, vol. 25, p. 1419.

    Article  Google Scholar 

  4. Hou, R., Liu, B., Sun, Y., Liu, L., et al., Recent advances in dual-carbon based electrochemical energy storage devices, Nano Energy, 2020, vol. 72, p. 104728. https://doi.org/10.1016/j.nanoen.2020.104728

    Article  Google Scholar 

  5. Ratajczak, P., Suss, M.E., Kaasik, F., and Béguin, F., Carbon electrodes for capacitive technologies, Energy Storage Mater., 2019, vol. 16, p. 126.

    Article  Google Scholar 

  6. Jose, J., Thomas, V., Vinod, V., Abraham, R., et al., Nanocellulose based functional materials for supercapacitor applications, J. Sci. Adv. Mater. Devices, 2019, vol. 4, p. 333.

    Article  Google Scholar 

  7. Yang, H., Ye, S., Zhou, J., and Liang, T., Biomass-derived porous carbon materials for supercapacitor, Front Chem., 2019, vol. 7, p. 1.

    Article  Google Scholar 

  8. Liu, Y., Chen, J., Cui B., Yin, C., et al., Design and preparation of biomass-derived carbon materials for supercapacitors: A review, J. Carbon Res., 2018, vol. 4, p. 53.

    Article  Google Scholar 

  9. Gao, M., Wang, W.K., Zheng, Y.M., Zhao, Q.B., et al., Hierarchically porous biochar for supercapacitor and electrochemical H2O2 production, Chem. Eng. J., 2020, vol. 402, p. 126171. https://doi.org/10.1016/j.cej.2020.126171

    Article  Google Scholar 

  10. Zhang, S., Wu, C., Wu, W., Zhou, C., et al., High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps, J. Power Sources, 2019, vol. 424, p. 1.

    Article  Google Scholar 

  11. Liang, T., Chen, C., Li, X., and Zhang, J., Popcorn-derived porous carbon for energy storage and CO2 capture, Langmuir, 2016, vol. 32, p. 8042.

    Article  Google Scholar 

  12. Liu, Y., An, Z., Wu, M., Yuan, A., et al., Peony pollen derived nitrogen-doped activated carbon for supercapacitor application, Chinese Chem. Lett., 2020, vol. 31, p. 1644.

    Article  Google Scholar 

  13. Yuan, G., Li, H., Hu, H., Xie, Y., et al., Microstructure engineering towards porous carbon materials derived from one biowaste precursor for multiple energy storage applications, Electrochim. Acta, 2019, vol. 326, p. 134974. https://doi.org/10.1016/j.electacta.2019.134974

    Article  Google Scholar 

  14. Mehare, M.D., Deshmukh, A.D., and Dhoble, S.J., Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application, J. Mater. Sci., 2020, vol. 55, p. 4213.

    Article  Google Scholar 

  15. Genc, R., Alas, M.O., Harputlu, E., Repp, S., et al., High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots, Sci. Rep., 2017, vol. 7, p. 1.

    Article  Google Scholar 

  16. Bi, Z., Kong, Q., Cao, Y., Sun, G., et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review, J. Mater. Chem. A, 2019, vol. 7, no. 27, p.16028. https://doi.org/10.1039/C9TA04436A

    Article  Google Scholar 

  17. Leng, L., Xiong, Q., Yang, L., Li, H., et al., An overview on engineering the surface area and porosity of biochar, Sci. Total Environ., 2021, vol. 763, p. 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

    Article  Google Scholar 

  18. Cheng, B., Zeng, R.J., and Jiang, H., Recent developments of post-modification of biochar for electrochemical energy storage, Bioresour. Technol., 2017, vol. 246, p. 224.

    Article  Google Scholar 

  19. Singhal, K., Mehtab, S., Upreti, B.B., and Zaidi, M.G.H., Recent advances in biochar modification for energy storage in supercapacitors: A review, Adv. Matt. Lett., 2021, vol. 12, p. 21021599.

    Article  Google Scholar 

  20. Fu, Y., Zhang, N., Shen, Y., Ge, X., et al., Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis, Bioresour. Technol., 2018, vol. 269, p. 67.

    Article  Google Scholar 

  21. Díez, N., Ferrero, G.A., Fuertes, A.B., and Sevilla, M., Sustainable salt template assisted chemical activation for the production of porous carbons with enhanced power handling ability in supercapacitors, Batter. Supercaps, 2019, vol. 2, p. 1.

    Google Scholar 

  22. Li, L., Jia, C., Zhu, X., and Zhang, S., Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents, J. Cleaner Prod., 2020, vol. 256, p. 120326.

    Article  Google Scholar 

  23. Qiu, Z., Wang, Y., Bi, X., Zhou, T., et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, 2018, vol. 376, p. 82.

    Article  Google Scholar 

  24. Tang, W., Zhang, Y., Zhong, Y., Shen, T., et al., Natural biomass-derived carbons for electrochemical energy storage, Mater. Res. Bull., 2017, vol. 88, p. 234.

    Article  Google Scholar 

  25. Pourhosseini, S.E.M., Norouzi, O., and Naderi, H.R., Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors, Biomass and Bioenergy, 2017, vol. 107, p. 287.

    Article  Google Scholar 

  26. Kouchachvili, L. and Entchev, E., Ag/Biochar composite for supercapacitor electrodes, Mater. Today Energy, 2017, vol. 6, p. 136.

    Article  Google Scholar 

  27. Genovese, M., Jiang, J., Lian, K., and Holm, N., High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob, J. Mater. Chem. A, 2015, vol. 3, p. 2903.

    Article  Google Scholar 

  28. Jin, H., Wang, X., Gu, Z., and Polin, J., Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation, J. Power Sources, 2013, vol. 236, p. 285.

    Article  Google Scholar 

  29. Kim, H.R., Lee, J.H., Lee, S.K., Chun, Y., et al., Fabricating a modified biochar-based all-solid-state flexible microsupercapacitor using pen lithography, J. Cleaner Prod., 2021, vol. 284, p. 125449. https://doi.org/10.1016/j.jclepro.2020.125449

    Article  Google Scholar 

  30. Hagemann, N., Spokas, K., Schmidt, H.P., Kägi, R., et al., Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs, Water, 2018, vol. 10, no. 182, p. 1.

    Article  Google Scholar 

  31. Standardized Product Definition and Product Testing Guidelines for Biochar, IBI-STD-2.1, 2015, pp. 1–61.

  32. Mu, J., Li, Q., Kong, X., Wu, X., et al., Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode, ChemElectroChem, 2019, vol. 6, p. 4022.

    Article  Google Scholar 

  33. Akgül, G., Iglesias, D., Ocon, P., and Moreno Jiménez, E., Valorization of tea-waste biochar for energy storage, Bioenergy Res., 2019, vol. 12, p. 1012.

    Article  Google Scholar 

  34. Chang, K., World Tea Production and Trade. Current and Future Development, Rome: Food and Agriculture Organization of the United Nations, Rome, 2015. https://www.fao.org/3/i4480e/i4480e.pdf.

  35. Akgül, G. and Bıçakçı, S.N., Optical and electrical properties of refined carbon derived from industrial tea waste, Mater. Res. Express, 2020, vol. 7, p. 045604.

    Article  Google Scholar 

  36. Kong, L.B., Que, W., Liu, L., Boey, F.Y.C., et al., Nanomaterials for Supercapacitors, Kong, L.B., Ed., CRC Press, 2018, ch. 3, p. 28.

    Google Scholar 

  37. Akgül, G., Bolat Maden, T., Diaz, E., and Moreno-Jiménez, E., Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO4 3– and Cd2+ from aqueous solutions, J. Water Reuse Desalin., 2019, vol. 9, p. 57.

    Article  Google Scholar 

  38. Wu, Y., Zhao, H., Wu, Z., Yue, L., et al., Rational design of carbon materials as anodes for potassium-ion batteries, Energy Storage Mater., 2021, vol. 34, p. 483.

    Article  Google Scholar 

  39. Peng, C., Yan, X., Wang, R., Lang, J., et al., Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochim. Acta, 2013, vol. 87, p. 401.

    Article  Google Scholar 

  40. Xia, L., Yu, L., Hu, D., and Chen, G.Z., Electrolytes for electrochemical energy storage, Mater. Chem. Front., 2017, vol. 1, p. 584.

    Article  Google Scholar 

  41. Gabhi, R.S., Kirk, D.W., and Jia, C.Q., Preliminary investigation of electrical conductivity of monolithic biochar, Carbon, 2017, vol. 116, p. 435.

    Article  Google Scholar 

  42. Bhoyate, S., Ranaweera, C.K., Zhang, C., Morey, T., et al., Eco-friendly and high performance supercapacitors for elevated temperature applications using recycled tea leaves, Global Challenges, 2017, vol. 1, p. 1700063.

    Article  Google Scholar 

  43. Khan, A., Senthil, R.A., Pan, J., Osman, S., et al., A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta, 2020, vol. 335, p. 135588.

    Article  Google Scholar 

  44. Inal, I.G., Holmes, S.M., Banford, A., and Aktas, Z., The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl. Surf. Sci., 2015, vol. 357, p. 696.

    Article  Google Scholar 

  45. Ratnaji, T. and Kennedy, L.J., Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth, Diamond and Related Materials, 2020, vol. 110, p. 108100.

    Article  Google Scholar 

  46. Gandla, D., Chen, H., and Tan, D.Q., Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon, Mater. Res. Express, 2020, vol. 7, p. 085606.

    Article  Google Scholar 

  47. Zhang, P., Wang, W., Kou, Z., Wang, B., et al., Low-cost and advanced symmetry supercapacitors based on three-dimensional tea waste of porous carbon nanosheets, Mater. Tech., 2021, vol. 36, p. 1.

    Article  Google Scholar 

  48. Ma, G., Li, J., Sun, K., Peng, H., et al., Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode, J. Solid State Electrochem., 2016, vol. 21, p. 525.

    Article  Google Scholar 

  49. Zhang, L., Zhao, G., Li, Y., and Zhu, G., A dual-template strategy of N and O co-doped hierarchically porous carbon derived from waste tea for excellent supercapacitor performance, Ionics, 2021, vol. 27, p. 3195. https://doi.org/10.1007/s11581-021-04084-z

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by Recep Tayyip Erdogan University, Scientific Research Projects Coordination Unit, Turkey, Project no. FYL-2019-1059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökçen Akgül.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçen Akgül, Oskay, K.O., Buldu-Akturk, M. et al. Electrochemical Energy Storage Capacity of Surface Engineered Renewable Carbon Derived from Industrial Tea Waste by HNO3 and K2CO3. Surf. Engin. Appl.Electrochem. 59, 199–209 (2023). https://doi.org/10.3103/S1068375523020084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523020084

Keywords:

Navigation