Skip to main content
Log in

Plasma-Capillary Effect in a Gap Formed by Two Vertically Mounted Cylindrical Rods

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

It is experimentally shown that a meniscus is raised under the action of pulsed-periodic spark discharges between the electrode and the meniscus in a capillary formed by two vertically fixed cylindrical rods. The recorded effect can be applied, for example, to intensify technological processes of the fabric impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. de Gennes, P.G., Brochard-Wyard, F., and Quérén, D., Capillarity and Wetting Phenomena. Drops, Bubbles, Pearls, Waves, New York: Springer, 2004. https://link.springer.com/book/10.1007/978-0-387-21656-0.

    Book  MATH  Google Scholar 

  2. Bormashenko, E.Yu., Wetting of Real Surfaces, Berlin: Walter de Gruyter, 2013. https://www.degruyter.com/document/doi/10.1515/9783110583144/html.

    Book  MATH  Google Scholar 

  3. Dubinov, A.E., Kozhaeva, Yu.P., and Selemir, V.D, Plasma capillary effect, High Temp., 2018, vol. 56, no. 3, p. 451. https://link.springer.com/article/ 10.1134/S0018151X18020062.

    Article  Google Scholar 

  4. Dubinov, A.E., Kozhayeva, J.P., Lyubimtseva, V.A., and Selemir, V.D., Plasma as a surfactant: A new capillary effect and a new wetting effect induced by nanosecond spark discharges, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 12, p. 3094. https://ieeexplore.ieee.org/ document/8039440.

    Article  Google Scholar 

  5. Dubinov, A.E., Kozhayeva, J.P., Lyubimtseva, V.A., and Selemir V.D., Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review, Adv. Colloid Interface Sci., 2019, vol. 271, no. 1, 101986. https://www.sciencedirect.com/science/article/abs/pii/S0001868619301599.

    Article  Google Scholar 

  6. Martin, D.C., Bartels, D.M., Rumbach, P., and Go, D.B., Experimental confirmation of solvated electron concentration and penetration scaling at a plasma–liquid interface, Plasma Sources Sci. Technol., 2021, vol. 30, no. 3, p. 03LT01-1. https://iopscience.iop.org/article/10.1088/1361-6595/abe11c.

    Article  Google Scholar 

  7. Dubinov, A.E., Iskhakova, D.N., and Lyubimtseva, V.A., An inversion of contact angle hysteresis when a liquid drop slides up on an inclined plane under the spark discharge action, Phys. Fluids, 2021, vol. 33, no. 6, p. 061707-1. https://aip.scitation.org/doi/10.1063/5.0055862.

    Article  Google Scholar 

  8. Bredikhin, A.A. and Kulumbaev, E.B., On the theory of the plasma capillary effect, High Temp., 2020, vol. 58, no. 6, p. 856. https://link.springer.com/article/10.1134/S0018151X20060061.

    Article  Google Scholar 

  9. Liu, T., Choi, K.F., and Li, Y., Capillary rise between cylinders, J. Phys. D.: Appl. Phys., 2007, vol. 40, no. 16, p. 5006. https://iopscience.iop.org/article/10.1088/0022-3727/40/16/038.

    Article  Google Scholar 

  10. Liu, T. and Choi, K.F., Capillary rise between cylinders, Surf. Interface Anal., 2008, vol. 40, nos. 3‒4, p. 368. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/sia.2690.

    Article  Google Scholar 

  11. Cooray, H., Cicuta, P., and Vella, D., The capillary interaction between two vertical cylinders, J. Phys.: Condens. Matter, 2012, vol. 24, no. 28, p. 284104-1. https://iopscience.iop.org/article/10.1088/0953-8984/24/28/284104.

    Google Scholar 

  12. Rieser, J.M., Arratia, P.E., Yodh, A.G., Gollub, J.P., et al., Tunable capillary-induced attraction between vertical cylinders, Langmuir, 2015, vol. 31, no. 8, p. 2421. https://pubs.acs.org/doi/10.1021/la5046139.

    Article  Google Scholar 

  13. Sun, X., Lee, H.J., Michielsen, S., and Wilusz, E., Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect, Appl. Surf. Sci., 2018, vol. 441, no. 1, p. 791. https://www.sciencedirect.com/science/article/abs/pii/S0169433218304537.

    Article  Google Scholar 

  14. Lukáš, D., Chaloupek, J., Košťáková, E., Pan, N., et al., Morphological transitions of capillary rise in a bundle of two and three solid parallel cylinders, Phys. A, 2006, vol. 371, no. 2, p. 226. https://www.sciencedirect.com/science/article/abs/pii/S0378437106004614.

  15. Duprat, C., Protière, S., Beebe, A.Y., and Stone, H.A., Wetting of flexible fibre arrays, Nature, 2012, vol. 482, no. 7386, p. 510. https://www.nature.com/articles/nature10779.

    Article  Google Scholar 

  16. Charpentier, J.-B., Brändle de Motta, J.C., and Ménard, T., Capillary phenomena in assemblies of parallel cylindrical fibers: From statics to dynamics, Int. J. Multiphase Flow, 2020, vol. 129, no. 1, 103304-1. https://www.sciencedirect.com/science/article/abs/ pii/S0301932219309735.

    Article  MathSciNet  Google Scholar 

  17. Dubinov, A.E., Kozhayeva, J.P., Golovanov, V.V., and Selemir, V.D., Coalescence of liquid droplets under effect of pulsed-periodic spark discharges, IEEE Trans. Plasma Sci., 2019, vol. 47, no. 1, p. 76. https://ieeexplore.ieee.org/document/8466040.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Lyubimtseva, V.A. Plasma-Capillary Effect in a Gap Formed by Two Vertically Mounted Cylindrical Rods. Surf. Engin. Appl.Electrochem. 59, 251–254 (2023). https://doi.org/10.3103/S1068375523020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523020059

Keywords:

Navigation