Skip to main content
Log in

Spectroscopic and Surface Analysis Data for Corrosion of Zinc in Sulfamic Acid—Electrochemical Approach

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Extensive chemical data for the corrosion of zinc in hydrochloric acid, sulphuric acid, sodium hydroxide and sodium chloride are available in the respective literature. However, studies of the corrosion of zinc in sulfamic acid are minimal. The present paper highlights the work on the corrosion behavior of zinc in sulfamic acid, which can be used as a pickling agent. Studies were carried out with three different acid concentrations: 0.1, 0.25, and 0.5 M at a temperature range of 303–323 K. The measurements were done by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. In addition, scanning electron microscopy, energy dispersive X-ray, and atomic force microscopy techniques were applied for the surface studies. Spectroscopic techniques like X-ray diffraction analysis and atomic absorption spectroscopy were used to substantiate the corrosion process. Studies showed that the corrosion rate increased with an increase in the acid concentration and temperature. Surface morphology studies and spectroscopic studies confirmed enhanced deterioration of zinc at higher acid concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Levy, G.K., Goldman, J., and Aghion, E., The prospects of zinc as a structural material for biodegradable implants—a review paper, Metals, 2017, vol. 7, no. 10, p. 402. https://doi.org/10.3390/met7100402

    Article  Google Scholar 

  2. Richards, A.W., Zinc processing, in Encyclopedia Britannica, 2019, p. 1.

  3. Maab, P., Corrosion and corrosion protection, in Handbook of Hot-Dip Galvanization, 2011, p. 1.

  4. Zin, I.M. and Lyon, S.B., Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture, Corros. Sci., 2003, vol. 45, p. 777.

    Article  Google Scholar 

  5. Maeda, S., Surface chemistry of galvanized steel sheets relevant to adhesion performance, Prog. Org. Coatings, 1996, vol. 28, p. 227. https://doi.org/10.1016/0300-9440(95)00610-9

    Article  Google Scholar 

  6. Pola, A., Tocci, M., and Goodwin, F.E., Review of microstructures and properties of zinc alloys, Metals, 2020, vol. 10, no. 2, p. 253. https://doi.org/10.3390/met10020253

    Article  Google Scholar 

  7. Goodwin, F.E., Zinc and Zinc Alloys, Springer Handbooks, Warlimont, H. and Martienssen,W., Eds., Cham: Springer, 2018, p. 427. https://doi.org/10.1007/978-3-319-69743-7_16

    Book  Google Scholar 

  8. Wang, T., Li, C., Xie, X., Lu, B., et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives, ACS Nano, 2020, vol. 14, no. 12, p. 16321. https://doi.org/10.1021/acsnano.0c07041

    Article  Google Scholar 

  9. Shin, J., Lee, J., Park, Y., and Choi, J.W., Aqueous zinc ion batteries: Focus on zinc metal anodes, Chem. Sci., 2020, vol. 11, p. 2028. https://doi.org/10.1039/d0sc00022a

    Article  Google Scholar 

  10. Wippermann, K., Schultze, J.W., Kessel, R., and Penninger, J., The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives, Corros. Sci., 1991, vol. 32, p. 205. https://doi.org/10.1016/0010-938X(91)90044-P

    Article  Google Scholar 

  11. Zhang, X.G., Corrosion potential and corrosion current, in Corrosion and Electrochemistry of Zinc, New York: Springer Science Business Media, 1996, p. 125.

    Book  Google Scholar 

  12. Beverskog, B. and Puigdomenech, I., Revised pourbaix diagrams for zinc at 25–300°C, Corros. Sci., 1997, vol. 39, p. 107. https://doi.org/10.1016/S0010-938X(97)89246-3

    Article  Google Scholar 

  13. Khulood, A. and Saleh, K.S.K., Corrosion inhibition of zinc in hydrochloric acid solution using ampicillin, Iraqi J. Sci., 2014, vol. 55, p. 295. https://doi.org/10.22401/jnus.10.2.05

    Article  Google Scholar 

  14. Sun, C.X., Chen, Y.M., Xu, H.W., Huang C.S., et al., Research on the corrosion inhibitors of zinc in hydrochloric acid, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 213, p. 012043. https://doi.org/10.1088/1757-899X/213/1/0120443

  15. Guruprasad, A.M., Sachin, H.P., Swetha, G.A., and Prasanna, B.M., Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies, Surf. Interfaces, 2020, vol. 19, p. 100478. https://doi.org/10.1016/j.surfin.2020.100478

    Article  Google Scholar 

  16. Guruprasad, A.M., Sachin, H.P., Swetha, G.A., and Prasanna, B.M., Adsorption and inhibitive properties of seroquel drug for the corrosion of zinc in 0.1 M hydrochloric acid solution, Int. J. Ind. Chem., 2019, vol. 10, p. 17. https://doi.org/10.1007/s40090-018-0168-x

    Article  Google Scholar 

  17. Gupta, N.K., Joshi, P.G., Srivastava, V., and Quraishi, M.A., Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry, Int. J. Biol. Macromol., 2018, vol. 106, p. 704. https://doi.org/10.1016/j.ijbiomac.2017.08.064

    Article  Google Scholar 

  18. Chandrabhan, V. and Quraishi, M.A., Sulfamic acid is an environment-friendly alternative electrolyte for industrial acid cleaning and corrosion inhibition: A mini review, Corros. Rev., 2022, vol. 40, p. 119.

    Article  Google Scholar 

  19. Vashi, R.T. and Champaneri, V.A., Toluidines as corrosion inhibitors for zinc in sulphamic acid, Indian J. Chem. Technol., 1997, vol. 4, p. 180.

    Google Scholar 

  20. Sachin, H.P., Praveen, B.M., and Abd Hamid, S.B., Corrosion inhibition of zinc by a new inhibitor in hydrochloric acid medium, Res. J. Chem. Sci., 2013, vol. 3, p. 82.

    Google Scholar 

  21. Vashi, R.T. and Desai, K., Aniline as corrosion inhibitor for zinc in hydrochloric acid, Chem. Sci. Trans., 2013, vol. 2, p. 670. https://doi.org/10.7598/cst2013.423

    Article  Google Scholar 

  22. Shylesha, B.S., Venkatesha, T.V., and Praveen, B.M., New electroactive compounds as corrosion inhibitors for zinc in acidic medium, Adv. Appl. Sci. Res., 2011, vol. 2, p. 333.

    Google Scholar 

  23. Mahida, M.B. and Chaudhari, H.G., Aliphatic amines as corrosion inhibitors for zinc in hydrochloric acid, Der Pharma Chem., 2012, vol. 4, p. 2305.

    Google Scholar 

  24. Sun, C.X., Chen, Y.M., Xu, H.W., Huang, C.S, et al., Research on the corrosion inhibitors of zinc in hydrochloric acid, Mater. Sci. Eng., 2017, vol. 213, p. 012043. https://doi.org/10.1088/1757-899X/213/1/012043

    Article  Google Scholar 

  25. Fouda, A.S., Madkour, L.H., El-Shafel, A.A., and Abd ElMaksoud, S.A., Corrosion inhibitors for zinc in 2 M HCl solution, Bull. Korean Chem. Soc., 1995, vol. 16, p. 454.

    Google Scholar 

  26. Fouda, A.S., Rashwan, S., Emam, A., and El-Morsy, F.E., Corrosion inhibition of zinc in acid medium using some novel organic compounds, Int. J. Electrochem. Sci., 2018, vol. 13, p. 3719. https://doi.org/10.20964/2018.04.23

    Article  Google Scholar 

  27. Agrawal, Y.K., Talati, J.D., Shah, M.D., Desai, M.N, et al., Schiff bases of ethylenediamine as corrosion inhibitors of zinc in sulphuric acid, Corros. Sci., 2004, vol. 46, p. 633. https://doi.org/10.1016/S0010-938X(03)00174-4

    Article  Google Scholar 

  28. Talati, J.D., Desai, M.N., and Shah, N.K., Meta-substituted aniline-N-salicylidenes as corrosion inhibitors of zinc in sulphuric acid, Mater. Chem. Phys., 2005, vol. 93, p. 54. https://doi.org/10.1016/j.matchemphys.2005.02.004

    Article  Google Scholar 

  29. El-Sherbini, E.E.F., Wahaab, S.M.A., and Deyab, M., Ethoxylated fatty acids as inhibitors for the corrosion of zinc in acid media, Mater. Chem. Phys., 2005, vol. 89, p. 183. https://doi.org/10.1016/j.matchemphys.2003.09.055

    Article  Google Scholar 

  30. Zele, S.A. and Vashi, R.T., Inhibition of corrosion of zinc in sulphuric acid by ethylamines, Int. J. Chem. Stud., 2016, vol. 4, p. 31.

    Google Scholar 

  31. Onwu, F.K., Ogueji, C., and Mgbemena, N.M., Inhibition of corrosion of zinc in H2SO4 medium by the Schiff base, 4-hydroxy phenyl methylidene-2-(1-phenyl ethylidene) hydrazine carbothioamide (4-HPMHC), Der Chem. Sin., 2016, vol. 7, p. 13.

    Google Scholar 

  32. Ein-Eli, Y., Auinat, M., and Starosvetsky, D., Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors, J. Power Sources, 2003, vol. 114, p. 330.

    Article  Google Scholar 

  33. Auinat, M. and Ein-eli, Y., Enhanced inhibition of zinc corrosion in alkaline solutions containing carboxylic acid modified PEG, J. Electrochem. Soc., 2005, vol. 152, p. 1158. https://doi.org/10.1149/1.1900963

    Article  Google Scholar 

  34. Dobryszycki, J. and Biallozor, S., On some organic inhibitors of zinc corrosion in alkaline media, Corros. Sci., 2001, vol. 43, p. 1309.

    Article  Google Scholar 

  35. Pruna, A., Brânzoi, V., and Brânzoi, F., Corrosion inhibition of zinc in KOH solutions, Adv. Mater. Res., 2007, vol. 23, p. 233. doi 10.4028/www.scientific.net/AMR.23.233

  36. Manov, S., Lamazouère, A.M., and Ariès, L., Electrochemical study of the corrosion behaviour of zinc treated with a new organic chelating inhibitor, Corros. Sci., 2000, vol. 42, p. 1235. https://doi.org/10.1016/S0010-938X(99)00132-8

    Article  Google Scholar 

  37. Aramaki, K., Treatment of zinc surface with cerium (III) nitrate to prevent zinc corrosion in aerated 0.5 M NaCl, Corros. Sci., 2001, vol. 43, p. 2201.

    Article  Google Scholar 

  38. Aramaki, K., The inhibition effects of chromate-free anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl, Corros. Sci., 2001, vol. 43, p. 591.

    Article  Google Scholar 

  39. Aramaki, K., The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5 M NaCl, Corros. Sci., 2001, vol. 43, p. 1573.

    Article  Google Scholar 

  40. Charitha, B.P. and Rao, P., Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies, Int. J. Biol. Macromol., 2018, vol. 112, p. 461. https://doi.org/10.1016/j.ijbiomac.2018.01.218

    Article  Google Scholar 

  41. Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., et al., Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1 M HCl solution, J. Taiwan Inst. Chem. Eng., 2016, vol. 58, p. 552. https://doi.org/10.1016/j.jtice.2015.06.031

    Article  Google Scholar 

  42. Abd El-Maksoud, S.A., and Fouda, A.S., Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium, Mater. Chem. Phys., 2005, vol. 93, p. 84. https://doi.org/10.1016/j.matchemphys.2005.02.020

    Article  Google Scholar 

  43. Shetty, K.S. and Shetty, A.N., Studies on corrosion behavior of 6061 Al–15 vol. pct. SiC(p) composite in HCl medium by electrochemical techniques, Surf. Eng. Appl. Electrochem., 2015, vol. 51, p. 374. https://doi.org/10.3103/S1068375515040134

    Article  Google Scholar 

  44. Farag, A.A., Migahed, M.A., and Al-Sabagh, A.M., Adsorption and inhibition behavior of a novel Schiff base on carbon steel corrosion in acid media, 2015, Egypt. J. Pet., vol. 24, p. 307. https://doi.org/10.1016/j.ejpe.2015.07.001

    Book  Google Scholar 

  45. Martinez, S. and Metikoš-Huković, M., A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors, J. Appl. Electrochem., 2003, vol. 33, p. 1137. https://doi.org/10.1023/B:JACH.0000003851.82985.5e

    Article  Google Scholar 

  46. Fawzy, A. and Toghan, A., Inhibition evaluation of chromotrope dyes for the corrosion of mild steel in an acidic environment: Thermodynamic and kinetic aspects, ACS Omega, 2021, vol. 6, p. 4051. https://doi.org/10.1021/acsomega.0c06121

    Article  Google Scholar 

  47. Deyab, M.A., El-Rehim, S.S.A., Hassan, H.H., and El-Moneim, A.A., Corrosion and corrosion inhibition of aluminum alloys A5052 and A5754 in sulfuric acid solutions by some inorganic inhibitors, Z. Phys. Chem., 2017, vol. 231, p. 1141. https://doi.org/10.1515/zpch-2016-0890

    Article  Google Scholar 

  48. Patel, A.S., Panchal, V.A., Mudaliar, G.V., and Shah, N.K., Impedance spectroscopic study of corrosion inhibition of Al-Pure by organic Schiff base in hydrochloric acid, J. Saudi Chem. Soc., 2013, vol. 17, p. 53. https://doi.org/10.1016/j.jscs.2011.06.003

    Article  Google Scholar 

  49. Abdo, H.S., Samad, U.A., Mohammed, J.A., Ragab, S.A., et al., Mitigating corrosion effects of Ti-48Al-2Cr-2Nb alloy fabricated via electron beam melting (EBM) technique by regulating the immersion conditions, Crystals, 2021, vol. 11, p. 889. https://doi.org/10.3390/cryst11080889

    Article  Google Scholar 

  50. Singh, A.K. and Quraishi, M.A., Effect of cefazolin on the corrosion of mild steel in HCl solution, Corros. Sci., 2010, vol. 52, p. 152. https://doi.org/10.1016/j.corsci.2009.08.050

    Article  Google Scholar 

  51. Ullah, S., Badshah, A., Ahmed, F., Raza, R., et al., Electrodeposited zinc electrodes for high current Zn/AgO bipolar batteries, Int. J. Electrochem. Sci., 2011, vol. 6, p. 3801.

    Google Scholar 

  52. Pais, M. and Rao, P., Maltodextrin for corrosion mitigation of zinc in sulfamic acid: Electrochemical, surface and spectroscopic studies, Int. J. Biol. Macromol., 2020, vol. 145, p. 575. https://doi.org/10.1016/j.ijbiomac.2019.12.197

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Ms. Mikitha Pais is grateful to MAHE, Manipal, India, for awarding the fellowship. Both authors kindly acknowledge the laboratory facility extended by the Department of Chemistry, MIT MAHE, Department of Chemical Engineering MIT MAHE, and Central Instrumentational Facility, MAHE, Manipal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmalatha Rao.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikitha Pais, Padmalatha Rao Spectroscopic and Surface Analysis Data for Corrosion of Zinc in Sulfamic Acid—Electrochemical Approach. Surf. Engin. Appl.Electrochem. 59, 96–106 (2023). https://doi.org/10.3103/S1068375523010131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523010131

Keywords:

Navigation