Skip to main content
Log in

Influence of Phase Composition of Zn–Ni Alloy Film on the Corrosion Resistance of Zinc Coating

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the phase composition of zinc-nickel alloy films electrodeposited on zinc-coated steel samples on their corrosion behavior was investigated. The alloys were electrodeposited from dilute ammonia-glycinate electrolytes. This type of electrolytes models the modified first bath in a rinsing system of the zinc plating line. It is shown that the galvanic displacement reaction at a level of 0.32 mA cm–2 does not lead to a decrease of the adhesion of the alloy films to the zinc substrate. The best corrosion protection of a zinc coating is provided by a zinc-nickel alloy film, which additionally to the γ-phase also contains Ni or the amorphous β-phase. At the thickness of only approximately 1.5 μm, the Zn–Ni alloy shifts the corrosion potential of the galvanized steel by 100–150 mV in a positive direction and reduces the corrosion current density by 1.2–1.8 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Aygün, B., Şakar, E., Korkut, T., Sayyed, M.I., et al., Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications, Results Phys., 2019, vol. 12, p. 1. https://doi.org/10.1016/j.rinp.2018.11.038

    Article  Google Scholar 

  2. Shibli, S.M.A., Meena, B.N., and Remya, R., A review on recent approaches in the field of hot dip zinc galvanizing process, Surf. Coat. Technol., 2015, vol. 262, p. 210.

    Article  Google Scholar 

  3. Lyon, S.B., Bingham, R., and Mills, D.J., Advances in corrosion protection by organic coatings: What we know and what we would like to know, Prog. Org. Coat., 2017, vol. 102, p. 2.

    Article  Google Scholar 

  4. Kobzar, Y.L. and Fatyeyeva, K., Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments, Chem. Eng. J., 2021, p. 131480.

  5. de Sousa Rodrigues, F.A., Gonçalves, Y.M.H., Horta, B.A.C., da Silva Santos, I., et al., Experimental and theoretical studies of isonitrosoacetanilides derivatives as corrosion inhibitors for mild steel in 1 mol L−1 HCl, J. Mol. Struct., 2021, vol. 1245, p. 131256. https://doi.org/10.1016/j.molstruc.2021.131256

    Article  Google Scholar 

  6. Margarit, I.C., Mattos, O.R., Ferreira, J.R.R., and Quintela, J.P., About coatings and cathodic protection: Electrochemical features of coatings used on pipelines, J. Coat. Technol., 2001, vol. 73, no. 914, p. 61.

    Article  Google Scholar 

  7. Conrad, H., Corbett, J., and Golden, T.D., Electrochemical deposition of γ-phase zinc-nickel alloys from alkaline solution, ECS Trans., 2011, vol. 33, no. 30, p. 85.

    Article  Google Scholar 

  8. Byk, T.V., Gaevskaya, T.V., and Tsybulskaya, L.S., Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings, Surf. Coat. Technol., 2008, vol. 202, no. 24, p. 5817.

    Article  Google Scholar 

  9. Abou-Krisha, M.M., Assaf, F.H., and Toghan, A.A., Electrodeposition of Zn–Ni alloys from sulfate bath, J. Solid State Electrochem., 2007, vol. 11, no. 2, p. 244.

    Article  Google Scholar 

  10. Abou-Krisha, M.M., Assaf, F.H., and El-Naby, S.A., Electrodeposition and characterization of zinc–nickel–iron alloy from sulfate bath: influence of plating bath temperature, J. Solid State Electrochem., 2009, vol. 13, no. 6, p. 879.

    Article  Google Scholar 

  11. Nayana, K.O. and Venkatesha, T.V., Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties, Bull. Mater. Sci., 2014, vol. 37, no. 5, p. 1137.

    Article  Google Scholar 

  12. Hosseini, M.G., Ashassi-Sorkhabi, H., and Ghiasvand, H.A.Y., Electrochemical studies of Zn–Ni alloy coatings from non-cyanide alkaline bath containing tartrate as complexing agent, Surf. Coat. Technol., 2008, vol. 202, no. 13, p. 2897.

    Article  Google Scholar 

  13. Feng, Z., An, M., Ren, L., Zhang, J., et al., Corrosion mechanism of nanocrystalline Zn–Ni alloys obtained from a new DMH-based bath as a replacement for Zn and Cd coatings, RSC Adv., 2016, vol. 6, no. 69, p. 64726. https://doi.org/10.1039/C6RA10638B

    Article  Google Scholar 

  14. Conde, A., Arenas, M.A., and De Damborenea, J.J., Electrodeposition of Zn–Ni coatings as Cd replacement for corrosion protection of high strength steel, Corros. Sci., 2011, vol. 53, no. 4, p. 1489.

    Article  Google Scholar 

  15. Fashu, S., Gu, C.D., Wang, X.L., and Tu, J.P., Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent, Surf. Coat. Technol., 2014, vol. 242, p. 34. https://doi.org/10.1016/j.surfcoat.2014.01.014

    Article  Google Scholar 

  16. Hammami, O., Dhouibi, L., and Triki, E., Influence of Zn–Ni alloy electrodeposition techniques on the coating corrosion behaviour in chloride solution, Surf. Coat. Technol., 2009, vol. 203, no. 19, p. 2863.

    Article  Google Scholar 

  17. Pushpavanam, M., Natarajan, S.R., Balakrishnan, K., and Sharma, L.R., Corrosion behaviour of electrodeposited zinc–nickel alloys, J. Appl. Electrochem., 1991, vol. 21, no. 7, p. 642.

    Article  Google Scholar 

  18. Cavallotti, P.L., Nobili, L., and Vicenzo, A., Phase structure of electrodeposited alloys, Electrochim. Acta, 2005, vol. 50, no. 23, p. 4557.

    Article  Google Scholar 

  19. Lotfi, N., Aliofkhazraei, M., Rahmani, H., and Darband, G.B., Zinc–nickel alloy electrodeposition: Characterization, properties, multilayers and composites, Protect. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 1102.

    Article  Google Scholar 

  20. Kołodyńska, D. and Hubicki, Z., Comparison of chelating ion exchange resins in sorption of copper (II) and zinc (II) complexes with ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), Can. J. Chem., 2008, vol. 86, no. 10, p. 958.

    Article  Google Scholar 

  21. Maizelis, A.A., Tul’skii, G.G., Bairachnyi, V.B., and Trubnikova, L.V., The effect of ligands on contact exchange in the NdFeB–Cu2+–P2 \({\text{O}}_{7}^{{4 - }}\)\({\text{NH}}_{4}^{ + }\) system, Russ. J. Electrochem., 2017, vol. 53, no. 4, p. 417. https://doi.org/10.1134/S102319351704008510.1134/S1023193517040085

    Article  Google Scholar 

  22. Maizelis, A.O. and Artemenko, V.M., UA Patent 123738, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/50714.

  23. Maizelis, A.A., Bairachnyi, B.I., and Tul’skii, G.G., Contact displacement of copper at copper plating of carbon steel parts, Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 1, p. 12.

    Article  Google Scholar 

  24. Feng, Z., Ren, L., Zhang, J., Yang, P., et al., Effect of additives on the corrosion mechanism of nanocrystalline zinc–nickel alloys in an alkaline bath, RSC Adv., 2016, vol. 6, no. 91, p. 88469.

    Article  Google Scholar 

  25. Roventi, G., Cecchini, R., Fabrizi, A., and Bellezze, T., Electrodeposition of nickel–zinc alloy coatings with high nickel content, Surf. Coat. Technol., 2015, vol. 276, p. 1.

    Article  Google Scholar 

  26. Faid, H., Mentar, L., Khelladi, M.R., and Azizi, A., Deposition potential effect on surface properties of Zn–Ni coatings, Surf. Eng., 2017, vol. 33, no. 7, p. 529. https://doi.org/10.1080/02670844.2017.1287836

    Article  Google Scholar 

  27. Maizelis, A.A., Voltammetric analysis of phase composition of Zn–Ni alloy thin films electrodeposited under different electrolyze modes, in 2017 IEEE 7th Int. Conf. Nanomaterials: Application and Properties (NAP), 2017, p. 02NTF13-1.

  28. Maizelis, A. and Bairachny, B., Voltammetric analysis of phase composition of Zn–Ni alloy thin films electro-deposited from weak alkaline polyligand electrolyte, J. Nano-Electron. Phys., 2017, vol. 9, no. 5, p. 05010.

    Google Scholar 

  29. Maizelis, A.A. and Bairachniy, B.I., Copper nucleation on nickel from pyrophosphate-based polyligand electrolyte, in Springer Proceedings in Physics, Cham: Springer, 2018.

    Google Scholar 

  30. Maizelis, A. and Kolupaieva, Z., Quantitative analysis of chemical and phase composition of Zn−Ni alloy coating by potentiodynamic stripping, Electroanalysis, 2021, vol. 33, no. 2, p. 515.

    Article  Google Scholar 

  31. Liu, Q., Wang, E., and Sun, G., Layered transition-metal hydroxides for alkaline hydrogen evolution reaction, Chin. J. Catal., 2020, vol. 41, no. 4, p. 574.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maizelis.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemenko, V., Khomenko, A. & Maizelis, A. Influence of Phase Composition of Zn–Ni Alloy Film on the Corrosion Resistance of Zinc Coating. Surf. Engin. Appl.Electrochem. 59, 90–95 (2023). https://doi.org/10.3103/S1068375523010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523010027

Keywords:

Navigation