Skip to main content
Log in

Structural and Phase Analysis of Composites Based on TiO2

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Morphological features of the obtained composite coatings on copper and stainless steel substrates have been investigated. The effect of titanium dioxide on the defectiveness and electric conductivity of composite materials has been studied. The content of titanium dioxide in the composition of the obtained materials has been defined by electron microscopy. The X-ray spectra of the obtained composites based on TiO2 have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kublanovsky, V.S. and Yapontseva, Yu.S., Electro-catalytic properties of Co-Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte, Electrocatalysis, 2014, vol. 5, no. 4, p. 372. https://doi.org/10.1007/s12678-014-0197-y

    Article  Google Scholar 

  2. Shtefan, V.V., Epifanova, A.S., Koval’ova, A.A., and Bairachnyi, B.I., Electrolytic deposition of highly hard coatings of a cobalt–molybdenum alloy, Mater. Sci., 2017, vol. 53, no. 1, p. 47. https://doi.org/10.1007/s11003-017-0042-6

    Article  Google Scholar 

  3. Mahdavi, S. and Allahkaram, S.R., Composition, characteristics and tribological behavior of Cr, Co–Cr and Co–Cr/TiO2 nano-composite coatings electrodeposited from trivalent chromium based baths, J. Alloys Compd., 2015, vol. 635, p. 150. https://doi.org/10.1016/j.jallcom.2015.02.119

    Article  Google Scholar 

  4. Krawiec, H., Vignal, V., Latkiewicz, M., and Herbst, F., Structure and corrosion behaviour of electrodeposited Co–Mo/TiO2 nano-composite coatings, Appl. Surf. Sci., 2018, vol. 427, part A, p. 1124. https://doi.org/10.1016/j.apsusc.2017.08.111

  5. Maizelis, A. and Bairachniy, B., Formation of multilayer metal-hydroxide electrode with developed surface for alkaline water electrolysis, Mater. Today: Proc., 2019, vol. 6, part 2, p. 227. https://doi.org/10.1016/j.matpr.2018.10.098

    Article  Google Scholar 

  6. Shtefan, V., Kanunnikova, N., Pilipenko, A., and Pancheva, H., Corrosion behavior of AISI 304 steel in acid solutions, Mater. Today: Proc., 2019, vol. 6, part 2, p. 150. https://doi.org/10.1016/j.matpr.2018.10.088

    Article  Google Scholar 

  7. Aydoğdu, G.H. and Aydinol, M.K., Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel, Corros. Sci., 2006, vol. 48, no. 11, p. 3565. https://doi.org/10.1016/j.corsci.2006.01.003

    Article  Google Scholar 

  8. Nishimura, R., Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method, Corros. Sci., 2007, vol. 49, no. 1, p. 81. https://doi.org/10.1016/j.corsci.2006.05.011

    Article  Google Scholar 

  9. Deng, S., Wang, S., Wang, L., Liu, J., et al., Influence of chloride on passive film chemistry of 304 stainless steel in sulphuric acid solution by glow discharge optical emission spectrometry analysis, Int. J. Electrochem. Sci., 2017, vol. 12, no. 2, p. 1106. https://doi.org/10.20964/2017.02.43

    Article  Google Scholar 

  10. Ved’, M.V., Nenastina, T.O., Shtefan, V.V., Bairachna, T.M., et al., Corrosion and electrochemical properties of binary cobalt and nickel alloys, Mater. Sci., 2008, vol. 44, no. 6, p. 840. https://doi.org/10.1007/s11003-009-9141-3

    Article  Google Scholar 

  11. Shtefan, V.V. and Kanunnikova, N.A., Oxidation of AISI 304 steel in Al- and Ti-containing solutions, Protect. Metals Phys. Chem. Surf., 2020, vol. 56, no. 2., p. 379. https://doi.org/10.1134/S2070205120020239

    Article  Google Scholar 

  12. Shtefan, V.V. and Smirnova, A.Yu., Synthesis of Ce-, Zr-, and Cu-containing oxide coatings on titanium using microarc oxidation, Russ. J. Electrochem., 2015, vol. 51, no. 12, p. 1168. https://doi.org/10.1134/S1023193515120101

    Article  Google Scholar 

  13. Shtefan, V.V., Kanunnikova, N.O., Balamut, N.S., and Kobziev O.V., Ukraine Patent 119022, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41794.

  14. Shtefan, V.V., Bairachnyi, B.I., Lisachuk, G.V., Smyrnova, O.Yu., et al., Corrosion of aluminum in contact with oxidized titanium and zirconium, Mater. Sci., 2016, vol. 51, no 5, p. 711. https://doi.org/10.1007/s11003-016-9894-4

    Article  Google Scholar 

  15. Shtefan, V.V. and Smirnova, A.Yu., Electrochemical formation of cerium-containing oxide coatings on titanium, Russ. J. Appl. Chem., 2013, vol. 86, no. 12, p. 1842. https://doi.org/10.1134/S1070427213120070

    Article  Google Scholar 

  16. Shtefan, V.V. and Smirnova, A.Yu., Oxidation of titanium in Zr- and Mo-containing solutions, Protect. Metals Phys. Chem. Surf., 2017, vol. 53, no. 2, p. 322. https://doi.org/10.1134/S2070205117020241

    Article  Google Scholar 

  17. Shtefan, V.V., Ved’, M.V., Sakhnenko, M.D., Pomoshnyk, L.V., et al., Regularities of the deposition of cobalt-tungsten alloys by pulsed currents, Mater. Sci., 2007, vol. 43, no. 3, p. 429. https://doi.org/10.1007/s11003-007-0049-5

    Article  Google Scholar 

  18. Dinu, M., Mouele, E.S.M., Parau, A.C., Vladescu, A., et al., Enhancement of the corrosion resistance of 304 stainless steel by Cr–N and Cr(N,O) coatings, Coatings, 2018, vol. 8, no. 4, p. 132. https://doi.org/10.3390/coatings8040132

    Article  Google Scholar 

  19. Bellezze, T., Roventi, G., Quaranta, A., and Fratesi, R., Improvement of pitting corrosion resistance of AISI 444 stainless steel to make it a possible substitute for AISI 304L and 316L in hot natural waters, Mater. Corros., 2008, vol. 59, no. 9, p. 727. https://doi.org/10.1002/maco.200804112

    Article  Google Scholar 

  20. Ved’, M.V., Sakhnenko, M.D., Shtefan, V.V., Lyon, S.B., et al., Computer modeling of the nonchromate treatment of aluminum alloys by neural networks, Mater. Sci., 2008, vol. 44, no. 2, p. 216. https://doi.org/10.1007/s11003-008-9066-2

    Article  Google Scholar 

  21. Shtefan, V., Kanunnikova, N., and Balamut, N., Anodic oxidation of AISI 304 steel in acidic solutions, Proc. Odessa Polytech. Univ., 2018, vol. 3, p. 89. https://doi.org/10.15276/opu.3.56.2018.09

    Article  Google Scholar 

  22. Smirnova, A.Y. and Shtefan, V.V., Corrosion resistance of MAO coatings on titanium formed in W-, Mo-, V-, Ce-electrolytes, Korroz.: Mater., Zashch., 2014, no. 8, p. 14.

  23. Shtefan, V.V., Smyrnov, O.O., Bezhenko, A.O., Epifanova, A.S., et al., Corrosion of cobalt–molybdenum alloys in chloride solutions, Mater. Sci., 2019, vol. 54, no. 4, p. 512. https://doi.org/10.1007/s11003-019-00225-y

    Article  Google Scholar 

  24. Odynets, L.L., Prokhorova, L.A., and Chekmasova, S.S., Impedance of metal–oxide–electrolyte system, Elektrokhimiya, 1974, vol. 10, no. 8, p. 1225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balamut.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtefan, V., Kanunnikova, N., Bulhakova, A. et al. Structural and Phase Analysis of Composites Based on TiO2. Surf. Engin. Appl.Electrochem. 58, 598–603 (2022). https://doi.org/10.3103/S1068375522060138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522060138

Keywords:

Navigation