Skip to main content
Log in

Electrochemical Performances of Tin Phosphite Electrode for Lithium Ion Batteries

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Finding alternative materials components of lithium ion batteries (LIBs) with high performances is a key factor to improve this technology. The objective of the present study was to investigate the electrochemical performances of tin phosphite (SnHPO3) as anode material for LIBs. SnHPO3 has been synthesized through a simple hydrothermal method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The characterization results proved that SnHPO3 has been successfully synthesized with no impurities. The electrochemical behavior of SnHPO3 as anode is discussed using cyclic voltammetry and galvanostatic cycling. Interesting performances have been obtained by using carboxymethyl cellulose (CMC) as binder. SnHPO3 has shown a good reversible capacity thanks to its open-framework with large size channels that buffer volume expansion of tin nanoparticles and to the CMC binder effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Qayyum, A.A., Khan, Z.S., Ashraf, S., and Ahmed, N., Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 14521.

    Article  Google Scholar 

  2. Guler, M.O., Guzeler, M., Nalci, D., Singil, M., et al., Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries, Appl. Surf. Sci., 2018, vol. 446, p. 122.

    Article  Google Scholar 

  3. Zhang, P., Zhu, S., He, Z., Wang, K., et al., Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance, J. Alloys Compd., 2016, vol. 674, p. 1.

    Article  Google Scholar 

  4. Narsimulu, D., Nageswara, N.N.B., and Satyanarayana, R.N., Rational design of SnO2 nanoflakes as a stable and high rate anode for lithium-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8556.

    Article  Google Scholar 

  5. Xia, Y., Han, S., Zhu, Y., Liang, Y., et al., Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Mater., 2019, vol. 18, p. 125.

    Article  Google Scholar 

  6. Liang, X., Wang, J., Zhang, S., Wang, L., et al., Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries, Appl. Surf. Sci., 2019, vol. 476, p. 28.

    Article  Google Scholar 

  7. Wei, L., Chen, C., Hou, Z., and Wei, H., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries, Sci. Rep., 2016, vol. 6, p. 1.

    Google Scholar 

  8. Pavitra, V., Udayabhanu, Harini, R., Viswanatha, R., et al., Sonochemical synthesis of SnO2–CuO nanocomposite: Diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8737.

    Article  Google Scholar 

  9. Yamauchi, H., Park, G., Nagakane, T., Honma, T., et al., Performance of lithium-ion battery with tin-phosphate glass anode and its characteristics, J. Electrochem. Soc., 2013, vol. 160, p. A1725.

    Article  Google Scholar 

  10. Lee, Y.K., Mahadik, D.B., Kim, T., Han, W., et al., Effect of differentiated textural properties of tin oxide aerogels on anode performance in lithium-ion batteries, J. Alloys Compd., 2018, vol. 732, p. 511.

    Article  Google Scholar 

  11. Chen, H., Lu, Y., Zhu, H., Guo, Y., et al., Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries, Electrochim. Acta., 2019, vol. 310, p. 203.

    Article  Google Scholar 

  12. Bi, H., Li, X., Chen, J., Zhang, L., et al., Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 22224.

    Article  Google Scholar 

  13. Kim, M.K., Kim, A.Y., Woo, J.Y., Lim, J.C., et al., Employment of SnO2:F@Ni3Sn2/Ni nanoclusters composites as an anode material for lithium-ion batteries, J. Alloys Compd., 2016, vol. 680, p. 744.

    Article  Google Scholar 

  14. Edfouf, Z., Aragón, M.J., León, B., Vicente, C.P., et al., Tin phosphate electrode materials prepared by the hydrolysis of tin halides for application in lithium ion battery, J. Phys. Chem. C., 2009, vol. 113, p. 5316.

    Article  Google Scholar 

  15. Ao, L., Wu, C., Xu, Y., Wang, X., et al., A novel Sn particles coated composite of SnOx/ZnO and N-doped carbon nanofibers as high-capacity and cycle-stable anode for lithium-ion batteries, J. Alloys Compd., 2020, vol. 819, p. 153036. https://doi.org/10.1016/j.jallcom.2019.153036

    Article  Google Scholar 

  16. Li, L., Yuan, Z., Fan, R., Luo, T., et al., Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 6449.

    Article  Google Scholar 

  17. Bezza, I., Trouillet, V., Fiedler, A., Bruns, M., et al., Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries, Electrochim. Acta, 2017, vol. 252, p. 446.

    Article  Google Scholar 

  18. Lee, J.G., Son, D., Kim, C., and Park, B., Electrochemical properties of tin phosphates with various mesopore ratios, J. Power Sources, 2007, vol. 172, p. 908.

    Article  Google Scholar 

  19. Zuo, M., Zhou, M., Hu, D., Gao, F., et al., A novel 3D framework indium phosphite-oxalate based on a pcu-type topology, J. Solid State Chem., 2016, vol. 237, p. 219.

    Article  Google Scholar 

  20. Nemec, I., Matulkova, I., Krumbe, W., Andersen, L., et al., Linear and nonlinear optical properties, pyroelectricity and vibrational spectroscopy of polar guanidinium hydrogen phosphite, GuH2PO3, and hydrogen selenite, GuHSeO3, Opt. Mater., 2021, vol. 111, p. 110722. https://doi.org/10.1016/j.optmat.2020.110722

    Article  Google Scholar 

  21. Lallaoui, A., Edfouf, Z., Benabdallah, O., Idrissi, S., et al., New titanium(III) phosphite structure and its application as anode for lithium ion batteries, Int. J. Hydrogen Energy, 2018, vol. 45, p. 1.

    Google Scholar 

  22. Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., MA Patent 40156 A1, 2017.

  23. Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., WO Patent 2019/013609 A1, 2019.

  24. Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., et al., Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochem. Commun., 2014, vol. 44, p. 66.

    Article  Google Scholar 

  25. Ma, Z., Lyu, Y., Yang, H., Li, Q., et al., Systematic investigation of the Binder’s role in the electrochemical performance of tin sulfide electrodes in SIBs, J. Power Sources, 2018, vol. 401, p. 195.

    Article  Google Scholar 

  26. Kamenskii, M.A., Vypritskaya, A.I., Eliseeva, S.N., Volkov, A.I., et al., Enhanced electrochemical properties of Co3O4 anode with PEDOT:PSS/CMC binder for lithium-ion batteries, Mater. Lett., 2021, vol. 282, p. 128658. https://doi.org/10.1016/j.matlet.2020.128658

    Article  Google Scholar 

  27. Li, S., Liu, Y., Zhang, Y., Song, Y., et al., A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries, J. Power Sources, 2021, vol. 485, p. 229331. https://doi.org/10.1016/j.jpowsour.2020.229331

    Article  Google Scholar 

  28. Nirmale, T.C., Kale, B.B., and Varma, A.J., A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery, Int. J. Biol. Macromol., 2017, vol. 103, p. 1032.

    Article  Google Scholar 

  29. Liu, G., Shen, X., Ui, K., Wang, L., et al., Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries, J. Power Sources, 2012, vol. 217, p. 108.

    Article  Google Scholar 

  30. Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H., et al., Six novel transition-metal phosphite compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of AI[MIII(HPO3)2] (A = K, NH4, Rb and M=V, Fe), J. Solid State Chem., 2013, vol. 198, p. 295.

    Article  Google Scholar 

  31. McDonald, R.C., Hau, H.K., and Eriks, K., Crystallographic studies of tin(II) compounds. I. Crystal structure of tin(II) fluoride, SnF2, Inorg. Chem., 1976, vol. 15, p. 762.

    Article  Google Scholar 

  32. Yaghoobnejad, H.S. and Choudhury, A., Phosphite as polyanion-based cathode for Li-ion battery: Synthesis, structure, and electrochemistry of LiFe(HPO3)2, Inorg. Chem., 2015, vol. 54, p. 6566.

    Article  Google Scholar 

  33. Xiong, D.B., Zhang, Z.J., Gulay, L.D., Tang, M.B., et al., Hydrothermal synthesis, crystal structure and physical properties of a new gadolinium phosphite hydrate, Inorg. Chim. Acta, 2009, vol. 362, p. 3013.

    Article  Google Scholar 

  34. Courtney, I.A. and Dahn, J.R., Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites, J. Electrochem. Soc., 1997, vol. 144, no. 6, p. 2045. https://doi.org/10.1149/1.1837740

    Article  Google Scholar 

  35. Edfouf, Z., Étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour électrode négative de batteries lithium ion, Thesis, Université Paris-Est, 2011. https://tel.archives-ouvertes.fr/tel-00673220/document

  36. Bezza, I., Kaus, M., Riekehr, L., Pfaffmann, L., et al., Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ 7Li/31P NMR, and 119Sn Mössbauer spectroscopy, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 10375.

    Article  Google Scholar 

  37. Azmi, B.M., Hasanaly, S.M., and Zakaria, M., Mesoporous tin phosphate as anode material for lithium-ion cells, Adv. Mater. Res., 2012, vol. 545, p. 175.

    Article  Google Scholar 

  38. Yin, L., Chai, S., Ma, J., Huang, J., et al., Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries, J. Alloys Compd., 2017, vol. 698, p. 828.

    Article  Google Scholar 

  39. Sandu, I., Brousse, T., Schleich, D.M., and Danot, M., The chemical changes occurring upon cycling of a SnO2 negative electrode for lithium ion cell: In situ Mössbauer investigation, J. Solid State Chem., 2006, vol. 179, p. 476.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Professor Ismael Saadoune from Cadi Ayyad University of Marrakech-Morocco for kindly lending the facilities for batteries assembling.

Funding

This study was funded under the program “Domaines prioritaires de la recherche scientifique et du développement technologique PPR” of the Ministère de l’éducation nationale, de la formation professionnelle, de l’enseignement supérieur et de la recherche scientifique for the project “Development of new nanomaterials for electrochemical energy storage: Sodium-air and lithium-ion batteries.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siham Idrissi.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHORS CONTRIBUTION

Siham Idrissi made the formal analysis, experimental work, and original draft preparation; Siham Idrissi and Abdelfettah Lallaoui made investigation; Mohammed Abd-Lefdil dealt with resources; Zineb Edfouf and Fouzia Cherkaoui El Moursli were responsible for revision and editing; Zineb Edfouf made co-supervision; Fouzia Cherkaoui El Moursli was responsible for principal supervision; Zineb Edfouf and Fouzia Cherkaoui El Moursli were project administrators. All authors participated in the discussions.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siham Idrissi, Edfouf, Z., Lallaoui, A. et al. Electrochemical Performances of Tin Phosphite Electrode for Lithium Ion Batteries. Surf. Engin. Appl.Electrochem. 58, 548–554 (2022). https://doi.org/10.3103/S1068375522050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522050064

Keywords:

Navigation