Skip to main content
Log in

Electrochemical Phase Formation in Metals under Low Force: Part 3. Changes in the Shapes of Electrodeposits

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The existence of the phenomenon of the electrochemical phase formation in metals and alloys via a supercooled liquid state stage is further discussed. In order to experimentally verify the existence of the phenomenon in question, the shapes of metal deposits subjected to the action of a centrifugal force parallel to the crystallization front in the course of electrodeposition were studied. The idea of the performed studies was that if the phase formation in the electrodeposited metal actually passes the stage of the liquid state, then under a low force exerted on a metal parallel to the crystallization front, one should expect a change in the shape of the deposits in the direction of the applied force. The results of the performed experiments made it possible to establish the effect of a change in the shapes of metal deposits electrodeposited under a low force applied parallel to the crystallization front, including a thickening of the deposit edge which is distant in the direction of the force action, its deformation, and elongation. The established effect is one more proof for the existence of the phenomenon under discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Girin, O.B., Electrochemical phase formation in metals and alloys under low force: Part 2. Wavelike flow of surface layers of electrodeposits, Surf. Eng. Appl. Electrochem. (in press).

  2. Girin, O.B. and Vorob’ev, G.M., Mechanism of structure formation in electrolytic coatings, Russ. Metall. Met., 1987, no. 4, p. 148.

  3. Girin, O.B. and Khlyntsev, V.P., Mechanism of liquid phase formation in metals during electrodeposition, Elektron. Obrab. Mater., 2000, vol. 36, no. 3, p. 13.

    Google Scholar 

  4. Girin, O.B., Phase transformations in the metallic materials being electrodeposited and their application for the development of advanced technologies for anticorrosive protection of canned-food steel sheet, Mater. Sci. Forum, 2007, vols. 561–565, p. 2369. https://doi.org/10.4028/www.scientific.net/MSF.561-565.2369

  5. Girin, O.B. and Korolyanchuk, D.G., Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 1. Metals, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 1, p. 28. https://doi.org/10.3103/S1068375520010068

    Article  Google Scholar 

  6. Girin, O.B. and Korolyanchuk, D.G., Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 2. Alloys in the form of substitutional solid solutions, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no 3, p. 289. https://doi.org/10.3103/S1068375520030059

    Article  Google Scholar 

  7. Girin, O.B. and Korolyanchuk, D.G., Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 3. Alloys in the form of intermetallic compounds, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 4, p. 501. https://doi.org/10.3103/S1068375520040067

    Article  Google Scholar 

  8. Fredriksson, H. and Åkerlind, U., Solidification and Crystallization Processing in Metals and Alloys, Weinheim: Wiley, 2012.

    Book  Google Scholar 

  9. Ohno, A., The Solidification of Metals, Tokyo: Chijin Shokan, 1976.

    Google Scholar 

  10. Glicksman, M.E., Principles of Solidification, Berlin: Springer Science and Business Media, 2010.

    Google Scholar 

  11. Girin, O.B., Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 2, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 3, p. 233. https://doi.org/10.3103/S1068375517030048

    Article  Google Scholar 

  12. Girin, O.B., Electrochemical phase formation in metals and alloys under low force: Part 1. Increase in the density of electrodeposits, Surf. Eng. Appl. Electrochem., 2022, vol. 58, no. 3, p. 221. https://doi.org/10.3103/S1068375522030085

    Article  Google Scholar 

  13. Gamburg, Yu.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer-Verlag, 2011.

    Book  Google Scholar 

  14. Plieth, W., Electrochemistry for Materials Science, Amsterdam: Elsevier, 2008.

    Google Scholar 

  15. Budevski, E., Staikov, G., and Lorenz, W.J., Electrochemical Phase Formation and Growth, Weinheim: Wiley, 2008.

    Google Scholar 

  16. Isaev, V.A., Elektrokhimicheskoe fazoobrazovanie (Electrochemical Phase Formation), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2007.

  17. Paunovic, M. and Schlesinger, M., Fundamentals of Electrochemical Deposition, Hoboken: Wiley, 2006.

    Book  Google Scholar 

  18. Milchev, A., Electrocrystallization. Fundamentals of Nucleation and Growth, New York: Kluwer, 2002.

    Google Scholar 

  19. Tsakova, V., Theory of electrochemical nucleation and growth—revisited?, J. Solid State Electrochem., 2020, vol. 24, p. 2183. https://doi.org/10.1007/s10008-020-04676-1

    Article  Google Scholar 

  20. Isaev, V.A., Grishenkova, O.V., and Zaykov, Y.P., Theoretical modeling of electrochemical nucleation and growth of a single metal nanocluster on a nanoelectrode, RSC Adv., 2020, vol. 10, no. 12, p. 6979. https://doi.org/10.1039/D0RA00608D

    Article  Google Scholar 

  21. Milchev, A., Electrochemical formation and growth of a new phase: What to do next?, J. Solid State Electrochem., 2020, vol. 24, p. 2143. https://doi.org/10.1007/s10008-020-04736-6

    Article  Google Scholar 

  22. Isaev, V.A., Grishenkova, O.V., and Zaikov, Y.P., Theoretical aspects of 2D electrochemical phase formation, J. Solid State Electrochem., 2021, vol. 25, p. 689.

    Article  Google Scholar 

  23. Gimenez, M.C., Del Popolo, M.G., Leiva, E.P.M., Garcia, S.G., et al., Theoretical considerations of electrochemical phase formation for an ideal Frank–van der Merwe system: Ag on Au(111) and Au(100), J. Electrochem. Soc., 2002, vol. 149, no. 4, p. E109.

    Article  Google Scholar 

  24. Sides, W.D. and Huang, Q., Electrochemical nucleation and growth of antimony telluride binary compound on gold substrate, J. Electrochem. Soc., 2018, vol. 165, no. 11, p. D568. https://doi.org/10.1149/2.1011811jes

    Article  Google Scholar 

  25. Romero-Romo, M., Aldana-González, J., Botello, L.E., Montes de Oca, M.G., et al., Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode, J. Electroanal. Chem., 2017, vol. 791, p. 1. https://doi.org/10.1016/j.jelechem.2017.03.003

    Article  Google Scholar 

  26. Cavallotti, P.L., Nobili, L., and Vicenzo, A., Phase structure of electrodeposited alloys, Electrochim. Acta, 2005, vol. 50, p. 4557.

    Article  Google Scholar 

  27. Milchev, A., Electrochemical phase formation: classical and atomistic theoretical models, Nanoscale, 2016, vol. 8, no. 29, p. 13867. https://doi.org/10.1007/s40828-015-0021-1

    Article  Google Scholar 

  28. Staikov, G., Nanoscale electrodeposition of low-dimensional metal phases and clusters, Nanoscale, 2016, vol. 8, no. 29, p. 13880. https://doi.org/10.1039/C6NR01547F

    Article  Google Scholar 

  29. Mokabber, T., Lu, L.Q., Rijn, P., Vakis, A.I., et al., Crystal growth mechanism of calcium phosphate coatings on titanium by electrochemical deposition, Surf. Coat. Technol., 2018, vol. 334, p. 526.

    Article  Google Scholar 

  30. Kong, D., Zheng, Z., Meng, F., Li, N., et al., Electrochemical nucleation and growth of cobalt from methanesulfonic acid electrolyte, J. Electrochem. Soc., 2018, vol. 165, no. 16, p. D783. https://doi.org/10.1149/2.0191816jes

    Article  Google Scholar 

  31. Chen, J., Luo, S., Liu, Y., and Chen, S., Theoretical analysis of electrochemical formation and phase transition of oxygenated adsorbates on Pt(111), ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 31, p. 20448. https://doi.org/10.1021/acsami.6b04545

    Article  Google Scholar 

  32. Zhou, X., Wang, Y., Liang, Z., and Jin, H., Electrochemical deposition and nucleation/growth mechanism of Ni–Co–Y2O3 multiple coatings, Materials, 2018, vol. 11, no. 7, p. 1124.

    Article  Google Scholar 

  33. Kolonits, T., Jenei, P., Toth, B.G., Czigany, Z., et al., Characterization of defect structure in electrodeposited nanocrystalline Ni films, J. Electrochem. Soc., 2016, vol. 163, no. 3, p. D107.

    Article  Google Scholar 

  34. Vikarchuk, A.A., Gamburg, Yu.D., and Yasnikov, I.S., Temperature evolution for small particles formed during electrocrystallization, Russ. J. Electrochem., 2008, vol. 44, no. 7, p. 857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Girin.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girin, O.B. Electrochemical Phase Formation in Metals under Low Force: Part 3. Changes in the Shapes of Electrodeposits. Surf. Engin. Appl.Electrochem. 58, 456–464 (2022). https://doi.org/10.3103/S1068375522050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522050052

Keywords:

Navigation