Skip to main content
Log in

Intensifying the Processes of Polysaccharide Extraction from Plant Raw Materials under the Action of an Electric Current

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The article presents the results of the studies into the intensification of the processes of extraction of water-soluble polysaccharides from plant raw materials—medicinal hyssop (Hyssopus officialis L.)—under the action of an electric current. The effect of direct, alternating, and pulsed electric currents on the degree of polysaccharides’ extraction was studied in comparison with the traditional pharmacopoeial method. It is shown that the energy consumption for the extraction process, intensified by a pulsed electric current, is significantly lower compared to extraction by convection heating. At the same time, the use of electric current makes it possible to reduce the processing temperature limits from 70 to 40°C, which will allow one to obtain not only aqueous but also aqueous-alcoholic and alcoholic extracts in the future, and, consequently, to extract biologically active water-insoluble substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., et al., Techniques for extraction of bioactive compounds from plant materials: A review, J. Food Eng., 2013, vol. 117, p. 426. https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  Google Scholar 

  2. Ivanov, A.V. and Tsurkin, V.N., Peculiarities of distribution of electromagnetic and hydrodynamic fields for conductive electric current treatment of melts in different modes, Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 1, p. 53. https://doi.org/10.3103/S1068375519010101

    Article  Google Scholar 

  3. Sokolov, P.D., Rastitel’nye resursy SSSR. Tsvetkovye rasteniya, ikh khimicheskii sostav, ispol’zovanie (Plant Resources of the USSR. Flowering Plants, Their Chemical Composition, and Use), St. Petersburg: Nauka, 1991.

  4. Mohd Tahir, Mohammad Khushtar, Mohd Fahad, and Md. Azizur Rahman, Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.), J. Appl. Pharm. Sci., 2018, vol. 8, no. 7, p. 132. https://doi.org/10.7324/japs.2018.8721

  5. Nikitina, A.S., Polysaccharides of hyssop officinalis cultivated in the conditions of the Stavropol krai, Med. Vestn. Sev. Kavk., 2007, no. 1, p. 55.

  6. Derzhavna Farmakopeya Ukraini (State Pharmacopoeia of Ukraine), Kharkov: RIGEG, 2007.

  7. Bukeeva, A.B. and Kudaibergenova, S.Zh., Review of modern methods for isolating bioactive substances from plants, Vestn. Evraz. Nats. Univ. im. L.N. Gumileva, 2012, no. 2, p. 192.

  8. Wang, L. and Weller, C.L., Recent advances in extraction of nutraceuticals from plants, Trends Food Sci. Technol., 2006, vol. 17, p. 300. https://doi.org/10.1016/j.tifs.2005.12.004

    Article  Google Scholar 

  9. Konichev, A.S. and Baurin, P.V., Traditional and modern methods of extraction of biologically active substances from plant materials: Prospects, advantages, disadvantages, Vestn. Mosk. Gos. Obl. Univ., Ser. Estestv. Nauki, 2011, no. 3, p. 49.

  10. Luque de Castro, M.D. and Garcia-Ayuso, L.E., Soxhlet extraction of solid materials: An outdated technique with a promising innovative future, Anal. Chim. Acta, 1998, vol. 369, p. 1. https://doi.org/10.1016/S0003-2670(98)00233-5

    Article  Google Scholar 

  11. Richter, B.E., Pohl, C., and Avdalovic, N., Accelerated solvent extraction: A technique for sample preparation, Anal. Chem., 1996, vol. 68, p. 1033. https://doi.org/10.1021/ac9508199

    Article  Google Scholar 

  12. Suna, H., Gea, X., Lv, Yu., and Wang, A., Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed, J. Chromatogr. A, 2012, vol. 1237, p. 1. https://doi.org/10.1016/j.chroma.2012.03.003

    Article  Google Scholar 

  13. Kulazynski, M., Stolarski, M., Faltynowicz, H., Narowska, B., et al., Supercritical fluid extraction of vegetable materials, Chem. Chem. Technol., 2016, vol. 10, p. 637.

    Article  Google Scholar 

  14. Awaluddin, S.A., Thiruvenkadam, S., Izhar, S., Hiroyuki, Y., et al., Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris, BioMed Res. Int., 2016, vol. 2016, id 5816974. https://doi.org/10.1155/2016/5816974

  15. Dumitrash, P.G., Bologa, M.K., and Shemyakova, T.D., Ultrasound-assisted extraction of biologically active substances from tomato seeds, Surf. Eng. Appl. Electrochem., 2016, vol. 52, p. 270.

    Article  Google Scholar 

  16. Chemat, S., Lagha, A., Ait Amar, H., Bartels, P.V., et al., Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds, Flavour Fragrance J., 2004, vol. 19, p. 188. https://doi.org/10.1002/ffj.1339

    Article  Google Scholar 

  17. Cravotto, G., Binello, A., Merizzi, G., and Avogadro, M., Improving solvent-free extraction of policosanol from rice bran by high-intensity ultrasound treatment, Eur. J. Lipid Sci. Technol., 2004, vol. 106, p. 147. https://doi.org/10.1002/ejlt.200300914

    Article  Google Scholar 

  18. Chueshov, V.I., Promyshlennaya tekhnologiya lekarstv (Industrial Technology of Medicines), Moscow: NFAU, 2002, p. 712.

  19. Kalinin, L.G., System analysis of the conditions for the extraction of plant materials in food and pharmaceutical production, Mikrovoln. Tekhnol. Narodn. Khoz., 2009, vols. 7–8, p. 9.

    Google Scholar 

  20. Campanone, L.A. and Zaritzky, N.E., Mathematical analysis of microwave heating process, J. Food Eng., 2005, vol. 69, p. 359. https://doi.org/10.1016/j.jfoodeng.2004.08.027

    Article  Google Scholar 

  21. Kuznetsova, S.A., Mikhailov, A.G., and Skvortsova, G.P., Intensification of the process of aqueous extraction of arabinogalactan from larch wood, Khim. Rastit. Syr’ya, 2005, no. 1, p. 53.

  22. Mandal, V., Mohan, Y., and Hemalatha, S., Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research, Pharmacogn. Rev., 2007, vol. 1, no. 1, p. 7.

    Google Scholar 

  23. Ovsyannikova, E.A., Ponamareva, A.N., Potapov, T.F., and Kiseleva, M.V., intensification of extraction processes by the biocatalytic method, Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2013, no. 1, p. 169.

  24. Kudimov, Yu.N., Kazub, V.T., Martirosyan, K.V., and Smolenskaya, G.V., Optimization studies of the electric discharge extraction process, Izv. Vyssh. Uchebn. Zaved. (Sev.-Kavk. Reg.). Tekh. Nauki, 2004, no. 2, p. 57.

  25. Gros, C., Lanoisellé, J., and Vorobiev, E., Aqueous extraction and separation of linseed press-cake components enhanced by high voltage electrical discharges, 9th World Filtration Congress, New Orleans, USA, 2004, id hal-02072697f.

  26. Li, Z., Fan, Y., and Xi, J., Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials, Food Chem., 2019, vol. 277, p. 246. https://doi.org/10.1016/j.foodchem.2018.10.119

    Article  Google Scholar 

  27. Malyushevskaya, A.P., Properties of starch size treated by an electric discharge in the mode of nonlinear volume cavitation, Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 6, p. 555.

    Article  Google Scholar 

  28. Bazhal, M.I., Ngadi, M.O., and Ragavan, Zh.S.V., Synergistic effect of pressure and pulsed electric field on the pressing of plant tissue, Elektron. Obrab. Mater., 2003, no. 3, p. 59.

  29. Papchenko, A.Ya., Popova, N.A., Chobanu, V.G., and Bologa, M.K., Electroplasmolysis of grapes using bipolar pulses, Elektron. Obrab. Mater., 2010, no. 2, p. 80.

  30. Gennis, R., Biomembranes. Molecular Structure and Function, New York: Springer, 1989.

    Book  Google Scholar 

  31. Fromm, M.E., Taylor, L.P., and Walbot, V., Expression of genes transfer red in tomonocotan dicot plant cells by electroporation, Proceedings of the National Academy of Sciences of the United States of America, 1985, vol. 82, p. 5824.

    Article  Google Scholar 

  32. Neumann, E., Membrane electroporation and direct gene transfer, Bioelectrochem. Bioenerg., 1992, vol. 28, p. 247.

    Article  Google Scholar 

  33. Ovsienko, I.V., Matzuy, L.Yu., Zakharenko, N.I., Len, T.A., et al., Magnetometric studies of catalyst refuses in nanocarbon materials, Nanoscale Res. Lett., 2008, vol. 3, art. no. 60. https://doi.org/10.1007/s11671-007-9115-z

    Article  Google Scholar 

  34. Kanduser, M. and Miklavcic, D., Electroporation in biological cell and tissue: an overview, Electrotechnologies for Extraction from Food Plants and Biomaterials, Vorobiev, E. and Lebovka, N., Eds., New York: Springer, 2008, p. 11.

    Google Scholar 

  35. Vorobiev, E. and Lebovka, N., Pulsed-electric-fields-induced effects in plant tissues: Fundamental aspects and perspectives of applications, Electrotechnologies for Extraction from Food Plants and Biomaterials, New York: Springer, 2008, p. 47.

    Google Scholar 

  36. Kaur, R., Gul, K., and Singh, A.K., Nutritional impact of ohmic heating on fruits and vegetables—A review, Cogent Food Agric., 2016, vol. 2, id 1159000. https://doi.org/10.1080/23311932.2016.1159000

  37. Varghese, K.S., Pandeym, M.C., Radhakrishna, K., and Bawa, A.S., Technology, applications and modeling of ohmic heating: A review, J. Food Sci. Technol., 2014, vol. 51, no. 10, p. 2304. https://doi.org/10.1007/s13197-012-0710-3

    Article  Google Scholar 

  38. Sensoy, I. and Sastry, S.K., Extraction using moderate electric fields, J. Food Sci., 2004, vol. 69, no. 1, p. 7. https://doi.org/10.1111/j.1365-2621.2004.tb17861.x

    Article  Google Scholar 

  39. Kulshrestha, S., Sarang, S., Loghavi, L., and Sastry, S., Moderate electrothermal treatments of cellular tissues, Electrotechnologies for Extraction from Food Plants and Biomaterials, Vorobiev, E. and Lebovka, N., Eds., New York: Springer, 2008, p. 91.

    Google Scholar 

  40. Granot, I. and Rubinsky, B., Mass transfer model for drug delivery in tissue cells with reversible electroporation, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 23–24, p. 5610. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.041

    Article  MATH  Google Scholar 

  41. Ivanishin, D.S., Katina, Z.F., and Rybachuk, I.Z., Spravochnik po zagotovkam lekarstvennykh rastenii (Handbook of Medicinal Plant Preparations), Kiev: Urozhai, 1986.

  42. Nazarova, N. and Vinnichenko, D., Electrotechnical control and current protection system of the high-voltage pulse-current generator, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kiev, 2017, p. 574. https://doi.org/10.1109/UKRCON.2017.8100307

  43. Trineeva, O.V. and Slivkin, A.I., Determination of the sum of polysaccharides and simple sugars in stinging nettle leaves, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2017, no. 1, p. 164.

  44. Kudimov, Yu.N., Kazub, V.T., and Krivorotov, N.V., Electrical discharge processes in a liquid and the kinetics of extraction of biologically active components, Vestn. Tver. Gos. Tekh. Univ., 2002, vol. 8, no. 3, p. 455.

  45. Kazub, V.T., Orobinskaya, V.N., Galdin, E.V., and Yemelyanov, S.A., The reduction of activity of antialimentary compounds of vegetable raw materials under exposure to electric discharges, IOP Conf. Ser. Mater. Sci. Eng., 2020, vol. 941, id 012059. https://doi.org/10.1088/1757-899X/941/1/012059

  46. Orobinskaya, V.N., Permyakov, A.V., Pisarenko, O.N., Galdin, E.V., et al., Modern methods for extraction of biologically active compounds, IOP Conf. Ser. Earth Environ. Sci., 2020, vol. 613, id 012096. https://doi.org/10.1088/1755-1315/613/1/012096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Malyushevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Myshkina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyushevskaya, A.P., Tsurkin, V.N., Ivanov, A.V. et al. Intensifying the Processes of Polysaccharide Extraction from Plant Raw Materials under the Action of an Electric Current. Surf. Engin. Appl.Electrochem. 58, 402–411 (2022). https://doi.org/10.3103/S1068375522040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522040111

Keywords:

Navigation